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a b s t r a c t

This paper describes an application of the ensemble Kalman filter (EnKF) in which streamflow observa-
tions are used to update states in a distributed hydrological model. We demonstrate that the standard
implementation of the EnKF is inappropriate because of non-linear relationships between model states
and observations. Transforming streamflow into log space before computing error covariances improves
filter performance. We also demonstrate that model simulations improve when we use a variant of the
EnKF that does not require perturbed observations. Our attempt to propagate information to neighbour-
ing basins was unsuccessful, largely due to inadequacies in modelling the spatial variability of hydrolog-
ical processes. New methods are needed to produce ensemble simulations that both reflect total model
error and adequately simulate the spatial variability of hydrological states and fluxes.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The science of hydrological forecasting involves predicting fu-
ture storages and fluxes of water in a river basin based on both
the water stored in the basin at the start of the forecast and the
external forcing to the basin during the forecast period. A great
deal of recent research focuses on the use of numerical weather
prediction model output to produce streamflow forecasts (e.g.,
[14,9,19,4]), but few studies evaluate the forecast improvements
that are possible from improved estimates of basin states at the
start of the forecast period [42].

Data assimilation can improve estimates of basin states and
hence improve streamflow forecasts [42]. The basic idea of data
assimilation is to quantify errors in both the hydrological model
and observations, and update hydrological model states in a way
that optimally combines model simulations with observations.
Data assimilation has great potential in distributed hydrological
models, both by improving state estimates at internal locations
in a gauged river basin and by improving state estimates in unga-
uged basins. However, this potential seems largely unexploited
[45]. The purpose of this paper is to discuss the issues involved
with using streamflow observations to update states in a distrib-
uted hydrological model with the ensemble Kalman filter.
ll rights reserved.

, OR 97204, USA.
The remainder of this paper is organized as follows. We review
alternative data assimilation methods in Section 2, and justify the
selection of the ensemble Kalman filter method for this study. In
Section 3 we describe the ensemble Kalman filter, and a variant,
the ensemble square root Kalman filter. Section 4 describes meth-
ods for quantifying model error, and Section 5 describes methods
for quantifying observation error. Section 6 describes application
of the ensemble Kalman filter in a distributed hydrological model,
including details of the model configuration, estimation of error
parameters, and implementation of the ensemble Kalman filter (a
detailed description of the hydrological model is provided in
Appendix A). We discuss results in Section 7, including (i) the im-
pact of assimilating streamflow observations at the basin outlet on
streamflow simulations at interior points in the basin; (ii) the im-
pact of assimilating streamflow at interior points on streamflow
simulations at the basin outlet; and (iii) the potential to update
hydrological states in ungauged basins. Finally, Section 8 summa-
rizes results and explores implications for future work.
2. Review of data assimilation methods

Several methods can be used to assimilate data into hydrologi-
cal models, each of which has strengths and weaknesses (e.g., [25]).
The earliest method for hydrological data assimilation is an exten-
sion to the linear Kalman filter (e.g., [23,24,46,47]). In the extended
Kalman filter the hydrological model is rendered in state-space
form in which each model state is continuously differentiable with
respect to all other model states. The estimate of model error at the
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time of an observation is estimated by propagating the covariance
matrix of model errors forward in time using a linearized model
operator [23]. This approach is unstable in cases of strong model
non-linearities [16,26]. Also, Reichle et al. [33] point out that appli-
cation of the extended Kalman filter can be impossible for large-
scale environmental assimilation problems (e.g., distributed
hydrological models), unless approximations are made (e.g., ignor-
ing spatial correlations among sub-catchments). However, such
approximations limit the applicability of the extended Kalman fil-
ter, as knowledge of the spatial correlations between model states
(e.g., soil moisture) and model fluxes at observing points in the ba-
sin (e.g., streamflow) is critical for updating hydrological states
throughout the basin (see also [34]).

Another approach for hydrological data assimilation is varia-
tional methods (e.g., [32,36]). In hydrological applications of varia-
tional methods the model error is usually assumed to be
temporally constant (e.g., [36]), and the problem reduces to identi-
fying a set of model states that minimizes a cost function that de-
fines differences between model states and observations. This is a
(typically large) minimization problem, in which a linearized ver-
sion of the hydrological model – the adjoint model – is used to
compute the gradient of the cost function. The advantage of varia-
tional methods is that they do not forecast the model error covari-
ance matrix and hence do not require a state-space formulation of
the hydrological model required in the extended Kalman filter [36].
Variational methods do however require development of an ad-
joint model, which complicates implementation of the method.

Yet another approach to data assimilation is the ensemble Kal-
man filter. This method has recently gained popularity in hydrol-
ogy, partly because increased computing power makes ensemble
simulations feasible, and because it is easy to implement. In the
ensemble Kalman filter (e.g., [17,18,42,45]) the hydrological model
is run forward in time with a finite set of ensemble members,
where each ensemble member is an equally-plausible representa-
tion of the real-world. Model error is then estimated directly from
the ensemble by assuming that the ensemble mean is ‘‘truth” and
computing the variance of the differences between each ensemble
member and the ensemble mean (note, this assumes the ensemble
is unbiased). As with other methods, the update to model states
depends on the relative error in the model and observations, and
the modelled covariance between model states and model fluxes
at observing points in the basin. The advantages of the ensemble
Kalman filter are that it does not require reformulation of the mod-
el into state-space form (as in the extended Kalman filter), and it
does not require specification of the temporally constant model er-
ror covariance or development of a separate adjoint model (as in
variational methods). The method does however require develop-
ment of techniques to produce ensemble model simulations. Also,
as with the extended Kalman filter and variational methods, the
update to model states in the ensemble Kalman filter assumes
the model errors have a Gaussian distribution – an assumption that
rarely holds in hydrological models [27].

Another ensemble data assimilation method is the particle filter
[29,2,27,43]. The particle filter differs from most other data assim-
ilation methods in that the model states are not updated. Rather,
each model ensemble member is assigned a probability (or weight)
based on the difference between each ensemble member and the
observations and the relative error in the model and observations.
The probability distribution of model predictions can then be com-
puted as a weighted combination of the ensemble members. The
advantage of the particle filter is that it does not assume Gaussian
model errors [27]. It does however require many more ensemble
members than the ensemble Kalman filter to produce reliable esti-
mates of model error [27,43].

The main reasons for selecting the ensemble Kalman filter for
this study are because it is easy to implement and because the
need to construct model ensembles is consistent with our probabi-
listic approach to streamflow forecasting. The ensemble Kalman
filter is used in preference to the particle filter because previous
studies have shown that it requires fewer ensemble members
(e.g., [43]).
3. Ensemble Kalman filters

3.1. Ensemble Kalman filter (EnKF)

The basic idea of data assimilation is to quantify errors in both
the hydrological model and observations, and update hydrological
model states in a way that optimally combines model background
(i.e., the model forecast at the time of the observations) with obser-
vations. In the ensemble Kalman filter (EnKF), model error esti-
mates are produced by assuming that the ensemble mean is
‘‘truth” and computing the variance of the differences between
each ensemble member and the ensemble mean. Each individual
observation is then updated based on the relative error in both
the model and observations.

The EnKF can be formalized as follows. Let Xb be the
nstate � nens background matrix of model states, where nstate is
the number of state variables and nens is the number of ensemble
members, that is

Xb ¼ ðxb
1; . . . ;xb

nensÞ ð1aÞ

where xb
1; . . . ; xb

nens are the background vectors of all model states for
each of the nens ensemble members before the state update. The
ensemble mean is defined as

�xb ¼ 1
nens

Xnens

i¼1

xb
i ð1bÞ

The ensemble anomaly for the ith ensemble member is x0bi ¼
xb

i � �xb
i , and the ensemble of anomalies is defined as

X0b ¼ ðx0b1 ; . . . ;x0bnensÞ ð1cÞ

An estimate of the model error covariance is then computed directly
from the ensemble anomalies, as

Pb ¼ 1
nens� 1

X0bX0b
T

ð1dÞ

Having Pb it is relatively straightforward to update model states.
The update equation is

xa
i ¼ xb

i þ Kðyi �Hxb
i Þ ð2aÞ

where

K ¼ PbHTðHPbHT þ RÞ�1 ð2bÞ

Note that each ensemble member is updated separately Eq. (2a). In
Eq. (2) xa

i is the analysis of model states after the update, yi is the
nobs � 1 vector of ‘‘observations” (nobs is the number of observa-
tions), H is the nobs � nstate operator that converts the model states
to observation space, K is the Kalman gain, and R is the nobs � nobs
observation error covariance matrix. In the usual implementation of
the ensemble Kalman filter (e.g., [8,18]), the nobs elements of yi for
each ensemble member are sampled from a distribution with mean
equal to the observations and variance R, providing nens vectors of
observations that are used to update each of the nens ensemble
members.

A key part of (2b) is the H matrix used to map model states to
observation states. In simple applications where the observed
and modelled quantities are the same, H is just a matrix of weights
used to interpolate a gridded field to observation locations. In typ-
ical applications, a separate model (termed the forward model) is
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used to compute the model equivalent of the observation from
model states. For example, in meteorological data assimilation a
radiative transfer model is used to compute the equivalent of satel-
lite radiances from the temperature and water vapor predictions
from the numerical weather prediction model. The forward model
can be included directly in the H matrix if it is linear; however, the
forward model must be run separately if it is non-linear. If there is
an exact match between observations and their model equivalent
(i.e., from the forward model), the model state vector can be aug-
mented with the model equivalent of the observation [18], and
the nobs � nstate H matrix can be constructed to have a value of
1 for elements where there is a model prediction of the observa-
tion, and 0 where there is no equivalent observation. In this case
HPbHT is the nobs � nobs matrix of model covariance at observing
locations in the basin and PbHT is the nstate � nobs matrix of
covariance between modelled streamflow at observing locations
in the basin and model states throughout the basin (Eq. (2b)). In
our application with a distributed hydrological model, the same
model is used to map inputs to states and map states to observa-
tions – the hydrological model therefore serves as the forward
model. There is an exact match between observations and their
model equivalent (streamflow at observing sites in the basin), so
the H matrix is just ones and zeroes as described above.

3.2. Ensemble square root filter (EnSRF)

The perturbed observations in the EnKF can have a detrimental
effect in that they add noise to the analysis. Burgers et al. [8] dem-
onstrated that perturbed observations are actually necessary in the
standard implementation of the filter to provide the correct analy-
sis error covariance (that is, the error after the assimilation, Eq.
(2a)). The analysis error covariance is [8,44]

Pa ¼ ðI� KHÞPbðI� KHÞT þ Kðy � ytÞðy � ytÞTKT ð3aÞ

Burgers et al. [8] demonstrated that if ðy � ytÞðy � ytÞT ¼ R, then
(since from Eq. (2b), K(HPbHT + R) = PbHT)

Pa ¼ ðI� KHÞPbðI� KHÞT þ KRKT

¼ Pb � KHPb � PbHTKT þ KðHPbHT þ RÞKT

¼ ðI� KHÞPb

ð3bÞ

but, in the case of when observations are not perturbed,
ðy � ytÞðy � ytÞT ¼ 0, then Eq. (3a) simplifies to

Pa ¼ ðI� KHÞPbðI� KHÞT ð3cÞ

and the analysis error covariance is too low. Perturbed observations
are therefore necessary.

Whitaker and Hamill [44] introduced the ensemble square root
filter (EnSRF) that provides the correct analysis error covariance
without perturbing the observations. The basic idea is to identify
a modified Kalman gain eK such that

ðI� eKHÞPbðI� eKHÞT ¼ ðI� eKHÞPb ð3dÞ

The solution to this equation is [44]

eK ¼ PbHT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HPbHT þ R

q� ��1
" #T

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HPbHT þ R
� �r

þ
ffiffiffiffi
R
p� ��1

ð3eÞ

with update equations

�xa ¼ �xb þ Kð�y �H�xbÞ
x0a ¼ x0b þ eKðy0 �Hx0bÞ

ð3fÞ

where as before the ensemble mean is denoted by an overbar and
the deviations from the ensemble mean are denoted by a prime.
Note that y0 = 0 (no perturbed observations), and that the original
Kalman gain is used to update the ensemble mean and the modified
Kalman gain is used to update ensemble anomalies. Whitaker and
Hamill [44] showed that the sampling error associated with per-
turbed observations makes the EnSRF more accurate than the EnKF
for the same ensemble size.

4. Quantifying model error

The ensemble Kalman filter uses the variance between multiple
ensemble members to quantify model error. Ensembles are pro-
duced by stochastically perturbing the precipitation forcing and
model states (in this study, soil moisture and aquifer storage).
These perturbations account for uncertainties in model inputs as
well as some of the uncertainty in the model itself (uncertainty
in model parameters and model structure).

4.1. Perturbations to model inputs and states

Ensembles of precipitation forcing are generated by

p0 ¼ pup ð4aÞ

The precipitation multiplier up is given as

up ¼ ð1� epÞ þ 2upep ð4bÞ

where up is a uniform random number, such that up is a realization
from a uniform distribution ranging from 1 � ep to 1 + ep.

Soil moisture is perturbed as

S0r ¼ Sr þus ð5aÞ

The coefficient us is parameterized as a function of the absolute
change in soil moisture between the start of the time step Sr(t � 1)
and the end of the time step Sr(t) by

us ¼ �esjSrðtÞ � Srðt � 1Þj þ 2usesjSrðtÞ � Srðt � 1Þj ð5bÞ

where us is a uniform random number, such that us is a realization
from a uniform distribution ranging from �esjSr(t) � Sr(t � 1)j to
esjSr(t) � Sr(t � 1)j.

Aquifer storage, as represented by the depth to the water table
ð�zÞ is perturbed as

�z0 ¼ �m ln
ðqb þ /zÞ

K0m

� �
þ k

	 

ð6aÞ

Here the depth to the water table ð�zÞ is modified by adding noise to
baseflow (qb) and inverting the baseflow equation (see Appendix A
on model description for definition of terms). This parameterization
is somewhat model-specific, but in principle most baseflow equa-
tions can be inverted. The perturbations are parameterized in terms
of baseflow only (instead of the time change in the depth to the
water table) because drainage from the root zone to the aquifer is
already modified by perturbations to soil storage (again, see Appen-
dix A for model description). The coefficient uz is estimated as

uz ¼ �ezqb þ 2uzezqb ð6bÞ

where uz is a uniform random number, such that uz is a realization
from a uniform distribution ranging from �ezqb to ezqb.

Our approach of perturbing model states differs from the tradi-
tional approach where perturbations are temporally constant (e.g.,
[33,13]). Parameterizing model errors in terms of the time change
in model states means that perturbations will be small when mod-
el fluxes are small (e.g., inter-storm periods) and perturbations will
be large when model fluxes are large (e.g., storm periods). This ap-
proach will not account for model errors that arise when large
fluxes of water are inadequately simulated (or missed) by the mod-
el. However, we believe that imposing time variant model errors in
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this way is more representative of model uncertainty than impos-
ing temporally constant model errors.

The parameters required for perturbing model states are there-
fore fractional error parameters for precipitation (ep), soil moisture
(es) and aquifer storage (ez).

4.2. Space–time correlation of model errors

The uniform random numbers up, us and uz in Eqs. (4–6) should
be correlated in both space and time. Following Evensen [18], the
time evolution of model errors is simulated as

st ¼ qst�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
wt�1 ð7aÞ

where wt�1 is a ncat � 1 vector of spatially correlated Normally dis-
tributed random numbers with mean equal to zero and variance
equal to 1 (ncat is the number of sub-catchments in the basin).
The coefficient q determines the temporal correlation of the sto-
chastic forcing, where q = 0 generates a sequence of white noise
and q = 1 will remove the stochastic forcing and represent the mod-
el errors with a random field that is constant in time [18].

The random fields st are transformed to uniform distributions
required in Eqs. (4–6) by computing the cumulative probability
of a standard normal deviate

ut ¼
1
2

erfc
stffiffiffi

2
p
� �

ð7bÞ

where erfc() is the complementary error function, and u ranges
from zero to one. We elect to use uniform distributions for all sto-
chastic perturbations, partly for simplicity, partly because we have
no knowledge of the appropriate distribution to use, and partly be-
cause truncated distributions do not result in large random pertur-
bations and unrealistic results.

The temporal persistence parameter in Eq. (7a), q, can be ex-
pressed in terms of decorrelation time, s

q ¼ 1� Dt
s

ð7cÞ

where Dt is the length of the model time step.
The spatially correlated field w is generated assuming an isotro-

pic correlation structure that decays exponentially as a function of
distance

rij ¼ exp � dij

L

� �
ð7dÞ

where rij is the correlation between point i and j, dij is the distance
between point i and j, and L is the correlation length scale. The ma-
trix decomposition method outlined by Clark and Slater [10] is used
to generate w.

The parameters required to simulate the time evolution of mod-
el errors are therefore s, which defines the decorrelation time, and
L, which defines the correlation length scale. These parameters are
required for precipitation, soil moisture, and aquifer storage.

5. Quantifying observation errors

Quantifying observation errors is important as the error in the
observation (relative to the error in the model) determines the
weight assigned to the observation when it is assimilated into a
model. Errors in streamflow stem both from measurement errors
in water level (stage) and uncertainties in the rating curve that is
used to transform measurements of stage to estimates of stream-
flow. Sorooshian and Dracup [38] point out that the concavity in
the stage-discharge relationship means that the errors in measure-
ment of stage translate into higher errors in discharge at high stage
levels than at low stage levels (see also Fig. 3). The uncertainties at
high stage levels are also larger because of fewer gaugings of high
flows and subsequent large uncertainty in the rating curves at high
water levels. For this study we parameterize errors in streamflow
measurements r2

obs as a function of the streamflow observation
qobs

r2
obs ¼ ðeobsqobsÞ

2 ð8Þ

where eobs is a parameter that must be specified.

6. Application in a distributed hydrological model

The ensemble Kalman filter is applied in a distributed hydrolog-
ical model (TopNet) in the Wairau river basin in New Zealand to
test the capabilities of the approach and identify potential prob-
lems. The following sections provide a description of the model
and basin (including model calibration methods), as well as details
on specifying error parameters and implementing the ensemble
Kalman filter.

6.1. Model description

The distributed hydrological model TopNet has two fundamen-
tal components: (i) simulating the water balance over a number of
sub-catchments throughout a river basin, and (ii) routing stream-
flow from each sub-catchment to the basin outlet. The water bal-
ance model includes simulating the storages and fluxes of water
in the canopy, snowpack, unsaturated and saturated soil zone
(Fig. 1). It also accounts for time delay in runoff of water within
each sub-basin. Runoff from each sub-basin flows into a digital
stream network and is routed to the basin outlet. A detailed
description of TopNet is provided in Appendix A. Bandaragoda et
al. [3] describe an earlier version of TopNet and its application in
a distributed model intercomparison experiment.

TopNet requires a set of parameters to describe basin geometry,
water holding capacity of the vegetation and soil, and the transmis-
sibility of the subsurface in each sub-catchment (Table 1). Fre-
quency distributions of the topographic wetness index and
distance to streams are required for all catchments. These parame-
ters are used for modelling sub-catchment variations in soil water
balance and water routing to the stream network, and are calcu-
lated from a 30 m digital elevation model. Average soil and land
cover parameters for each sub-catchment (Table 1) were generated
by intersecting the sub-catchment polygon coverages with poly-
gons from soils and land cover databases. The resulting intersection
tables indicate the percentage of soils and land cover types per sub-
catchment and can be used to calculate the mean values of soil/cov-
er parameters, which are linked as look-up tables to soil/cover
types. There is no a priori information for some TopNet parameters
(e.g., recession constants, such as the Topmodel m parameter), and
these parameters are set to constant values for all sub-catchments.

The network component of TopNet requires the digital topology
of the river network and parameters for each reach of the network
(Table 2), both of which were extracted from digital elevation
models.

TopNet has a similar level of complexity to a range of existing
hydrological models (e.g., [3,31]). As with any model it is necessary
to make a number of simplifying assumptions in order to aggregate
the storage of water that occurs in nature into control volumes
(state variables) that we can manipulate on a computer, and to
parameterize the fluxes of water between state variables. Without
more extensive evaluation of the appropriateness of individual
model components for the Wairau River basin (for example, using
the method proposed by Clark et al. [12]), we have no a priori
expectations of whether TopNet models will perform better or
worse than other models.



Fig. 1. Wiring diagram of catchment processes in the TopNet model. The topographic index ln(a/tanb) increases towards the stream indicating areas of topographic
convergence and areas where the water table intersects the soil zone. The state variables and fluxes are defined in Appendix A.

Table 1
Parameters of the basin model component of TopNet

Parameter Symbol [units] Description Default value Data source

Albedo a – LCDBc

Atmospheric lapse rate c [K m�1] 0.0065 Uniform
Wetness index (frequency distribution) ji – RECa

Stream distance (frequency distribution) xi – RECa

Saturated store sensitivity m [m] Describes exponential decrease of conductivity with depth 0.08 Uniform
Saturated hydraulic conductivity K0 [m s�1] 0.01 Uniform
Drainable soil water hdr Range between saturation and field capacity – LRIb

Plant-available soil water hpa Range between field capacity and wilting point – LRIb

Depth of soil zr [m] – LRIb

Exponent in drainage function c Describes drainage into saturated zone LRIb

Wetting front suction wf [m] Parameter of Green–Ampt Infiltration capacity 0.3 Uniform
Overland flow velocity v [m s�1] 0.1 Uniform
Canopy capacity Cc [m] – LCDBc

Evaporation enhancement cr Increasing evaporation losses from interception – LCDBc

a The REC is the New Zealand River Environment Classification [37], which has spatial information about the river network and the catchments of New Zealand’s rivers. The
REC includes a digital network of approximately 600,000 river reaches and related sub-basins for New Zealand. Topographic reach and catchment properties in the REC were
derived from a 30 m digital elevation model (DEM).

b The LRI is the New Zealand Land Resource Inventory [28], which includes data on soils for all of New Zealand. The drainable water (hdr) the plant-available water (hpa) and
the soil depth (zr) are obtained from look-up tables based on soil type, and the exponent in the drainage function (c) is estimated as an empirical function of field capacity.

c The LCDB is the New Zealand land cover database, which includes land cover information for all of New Zealand. Albedo and vegetation parameters are obtained from
look-up tables based on vegetation type (see [3] for more details).

Table 2
Parameters of the network model component of TopNet

Model parameter Symbol Description Data
source

Network topology REC
Reach length L REC
Reach slope S REC
Upstream area A Total upstream area above stream

reach
REC

Reach Manning’s n N Uniform
Hydraulic

geometry
parameters

a, b Relationship between drainage area
and channel width W = aAb

Uniform
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We elect to use TopNet for this study for two main reasons.
First, as detailed in Appendix A, TopNet is comprehensive enough
to be suitable for use in a diverse range of river basins (i.e., the
model includes vegetation and snow modules, it computes both
infiltration-excess and saturation-excess runoff, and it simulates
interactions between the water table and the soil zone). Ibbitt et
al. [21] used TopNet to simulate streamflow in 14 different river
basins across New Zealand in different climate regimes, and dem-
onstrated that TopNet has medium (r2 = 70–80%) and good accu-
racy (r2 = 80–90%) in 10 out of the 14 river basins studied. We
wished to use a model that is of comparable complexity to existing
hydrological models that are used operationally for streamflow
forecasting around the world. The similarities in structure between
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TopNet and other models [31,12] imply that the results in this pa-
per are relevant for other model structures. Our second reason for
using TopNet is more pragmatic. TopNet was developed at the Na-
tional Institute of Water and Atmospheric Research (NIWA), and
our intimate knowledge of the model source code (and the modu-
lar model structure) means that it is relatively straightforward to
add new modelling capabilities. Moreover, TopNet is the hydrolog-
ical component of a nationwide flood forecasting system devel-
oped for New Zealand [11], so any new capabilities are
immediately available for use as part of NIWA’s flood forecasting
service.

6.2. Site location and data

All model simulations are performed for the Wairau River basin
in the northern South Island, New Zealand (Fig. 2). The Wairau
drains an area of 3825 km2, and elevations in the catchment range
from sea level to 2309 m. Vegetation in the Wairau includes pas-
ture throughout the southern hills, native ever-green beech forest
in the mountains to the west and southwest, a mix of native beech
forest and exotic pine forest on the northern ranges, and vineyards
on the Wairau plains (Fig. 2). The Wairau River is a braided gravel-
bed river that is approximately 100 m wide in the lower reaches.
Rainfall in the Wairau is lowest over the Wairau plains and south-
ern hills (600 mm/year) and highest over the western ranges
(5000 mm/year). There is a small hydropower scheme in the mid-
dle reaches of the Wairau and some irrigation on the Wairau
plains, but the power generation and irrigation have only minor ef-
fects on catchment streamflow.

Model simulations were forced using interpolated climate data
produced by Tait et al. [40] based on data from over 500 climate
stations in New Zealand. Tait et al. [40] used a second-order deriv-
ative thin plate smoothing spline to interpolate point precipita-
tion data across a regular 0.05� latitude–longitude grid (approx.
5 km � 5 km). Similar methods were used to interpolate point sta-
tion data on daily maximum and minimum temperature, relative
humidity, solar radiation, and wind speed to the same 0.05� lati-
tude–longitude grid. Gridded time series for all climate variables
have been produced for the period 1971-present. The interpolated
climate data are used in TopNet by using data from the closest grid
point to each sub-catchment as model forcing for that sub-
catchment.

Model simulations are performed at hourly time steps, which
requires temporal disaggregation of the daily gridded climate esti-
mates. Temporal disaggregation of precipitation data was done by
matching the temporal pattern of rainfall observed at hourly rain
gauges in and around the Wairau catchment – hourly data were
expressed as ratios of daily totals, the ratios were interpolated to
the 0.05� grid, and the interpolated ratios were used to disaggre-
Fig. 2. The Wairau River basin, showing (left) location; (middle) elevation, digital ri
simulations the Wairau basin is disaggregated into 380 sub-catchments, linked with the
gate the daily gridded precipitation estimate. This approach is
superior to interpolating the hourly precipitation data directly,
both because there are many more daily rain gauges than hourly
gauges, and because the daily precipitation data is less ‘‘noisy”
than hourly precipitation data. Hourly temperature data was pro-
duced by fitting a sine curve to the spatially interpolated maxi-
mum and minimum temperatures, in which the time of
maximum temperature was determined by fitting the parameters
of the sine curve to hourly station data. Relative humidity data
was temporally disaggregated by converting relative humidity to
dew-point temperature, uniformly disaggregating the dew-point
temperature for each hour in the day, and using the disaggregated
temperature data to convert the hourly dew-point data to hourly
estimates of relative humidity. Solar radiation was disaggregated
by computing the daily atmospheric transmissivity (by dividing
the interpolated solar radiation by estimates of clear-sky solar
radiation), and using the daily transmissivity to modify hourly esti-
mates of clear-sky radiation. Finally, wind speed was disaggregated
uniformly throughout the day.

6.3. Model calibration

The default TopNet parameters (Table 1) were adjusted to im-
prove the correspondence between model simulations and obser-
vations. Our calibration strategy for this study is to adjust the
default TopNet model parameters (which vary spatially within
the river basin) uniformly throughout the river basin using a spa-
tially constant set of parameter multipliers, with the objective of
minimizing errors at the basin outlet (Barnetts Bank). In this ap-
proach all sub-catchments receive the same multiplier. Data from
interior sites were not used for model calibration. The use of a spa-
tially constant set of parameter multipliers assumes that the spa-
tial distribution of default TopNet parameters is suitable, which
may be unrealistic in cases where the default parameters are spa-
tially uniform (Table 1). Nevertheless, use of a single set of param-
eter multipliers for the entire basin reduces the dimensionality of
the parameter estimation problem. Optimal parameter multipliers
were obtained using the dynamically dimensioned search algo-
rithm [41].

6.4. Model error parameters

Table 3 summarizes the model error parameters necessary to
produce the ensemble simulations used in this study. The frac-
tional error parameters ep, es, and ez should vary depending on both
the model that is used and the basin that is modelled. Various com-
binations of the fractional error parameters were evaluated in an
attempt to identify the set of error parameters that produces
ensemble streamflow simulations with the correct ensemble
ver network, and location of observing sites; and (right) land cover. For TopNet
digital river network (middle).



Table 3
Model error parameters

Model parameter Symbol Precipitation Soil storage Aquifer storage

Correlation length scale L 100 km 100 km 100 km
Decorrelation time s 1 daya 5 days computed
Fractional error e 0.20 0.10 0.05

a Ensembles of daily precipitation were produced assuming there is no temporal
persistence from one day to the next. Each ensemble member was then disaggre-
gated to hourly intervals in exactly the same way (that is, each ensemble member
has an identical temporal pattern of precipitation throughout the day, but different
daily totals).
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spread. However, there is high correlation between the different
fractional error parameters. Large ensemble spread can be gener-
ated through large perturbations to precipitation, soil storage, or
the depth to the water table, and it is difficult to disaggregate total
error into the component parts based on streamflow observations
alone (see also the discussion in [13]). In this study we specified
fractional error parameters as ep = 0.20, es = 0.10, and ez = 0.05
(Table 3). Note that for data assimilation it is preferable to over-
estimate model errors rather than under-estimate them, as
under-estimation of model errors can result in too much reliance
on the model and filter divergence [13].

The correlation length scale L is set to 100 km for all variables.
One hundred kilometer is approximately equal to the maximum
width of the Wairau basin, or half its length. While this length scale
may be appropriate for precipitation (e.g., [10]), there is very little
Fig. 3. Gaugings and rating curves for the four water level
guidance on appropriate length scales for errors in soil moisture
and aquifer storage. We will return to this issue later in the paper.

The decorrelation time s is specified at different values for pre-
cipitation, soil moisture, and aquifer storage. s is specified as one
day for precipitation. The precipitation ensembles are constructed
by perturbing the daily gridded precipitation estimates, and each
ensemble member is then disaggregated to hourly intervals using
the same method for each ensemble member; hence, the decorre-
lation time of one day implies there is no temporal persistence in
precipitation from one day to the next. The decorrelation time
for soil storage is specified at 5 days to reflect the relatively fast
drainage of root zone soil water.

The decorrelation time for aquifer storage is estimated based on
the drainage properties of the aquifer. Ambroise et al. [1] give base-
flow recession curves for a linear reservoir as

qb ¼ qs exp � sq0

m

� �
ð9aÞ

where qb is baseflow, qs is baseflow at a specified time, s is the time
between qb and qs, q0 is the baseflow at saturation (i.e., when �z ¼ 0),
and m describes the decrease in hydraulic conductivity with depth
and the depth scale of the aquifer. The linear reservoir has the con-
venient property that s can be expressed as a function of qb/qs.
Given

q0 ¼ K0me�k ð9bÞ
where K0 is the saturated hydraulic conductivity and k is the mean
topographic index (see Appendix A), and substituting (9b) in (9a),
(9a) can be solved for s as
sites used in this study. See Fig. 2 for station locations.
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s ¼
ln qb

qs

� �
K0e�k

ð9cÞ

In this study we specify qb/qs = 0.01, meaning s is the time re-
quired to reduce baseflow by two orders of magnitude. The decor-
relation time for aquifer storage therefore differs based on the
topographical characteristics and drainage parameters assigned
to each sub-catchment – low values of s will be assigned to steep
sub-catchments with short hillslope lengths, and to sub-catch-
ments with high values of K0.

6.5. Observation error parameters

Fig. 3 shows the gaugings and the rating curves for the four
observing sites used in this study. Note that there is considerable
scatter in the stage-streamflow relationships. The scatter occurs
because movement of gravel in the stream bed changes the
cross-section of the river at the measurement sites. Frequent gau-
gings are necessary in these gravel-bed rivers to identify changes
in the cross-section of the river and associated changes in the rat-
ing curves.

The spread of ratings is not always a surrogate for uncertainty.
For example, the convergence of the rating curves at high stage for
Barnetts Bank and Waihopai occurs because all rating curves pass
through the same high flow data point. The similarity between rat-
ing curves at high flows therefore reflect more a lack of data (gau-
gings) at high stage than high certainty in the stage-discharge
relationship.

As outlined in Section 5 (Eq. (8)), errors in streamflow measure-
ments depend on the streamflow rate. The error parameter is spec-
ified as eobs = 0.1 for all four observing sites. Further, the
measurement errors in stage and the uncertainties in the rating
curves are assumed to be independent between sites (i.e., the ma-
trix R in Eqs. (2)–(3) is diagonal).

6.6. EnKF implementation

In this study our state vectors ðxb
1; . . . ;xb

nensÞ used for data assim-
ilation include soil storage, aquifer storage and surface storage for
all sub-catchments in the basin, and model predictions of stream-
flow at observing locations in the basin. The model predictions of
streamflow are actually diagnostic variables not state variables –
they are the weighted average of flow particles that exit an ob-
served reach in a given time step (see Appendix A) – and are not
updated as part of the assimilation. While for some applications
it may be desirable to update streamflow in the river network,
computing covariances between network states is difficult because
flow particles are at irregular times, so network states are not up-
dated. The only variables updated are therefore the timestep-aver-
age state variables in model sub-basins.

The dimension of the matrices used for data assimilation is
determined by the number of observation locations. Recall from
Eq. (2) that HPbHT is the nobs � nobs matrix of covariance between
the model predictions of the observations and PbHT is nstate � nobs
the covariance between model predictions of the observations and
model states. It is therefore never necessary to assemble the entire
model error covariance matrix (Pb), which can be large in distrib-
uted models (multiple state variables for hundreds of sub-catch-
ments). An efficient method for implementing the EnKF is as
follows:

(loop through time)
1. Perturb precipitation inputs and model states.
2. Run the model for each ensemble member until a new

observation becomes available (in this case one time step
of length one hour).
3. Identify all observing sites in the basin with valid data
(nobs), and assemble the nobs observation vector �y and the
nobs � nobs observation error matrix R. Methods to define
observation error are explained in Section 5.

4. Compute the nobs � nobs model error covariance matrix
HPbHT, that describes covariance between model predic-
tions of the observations.

5. Compute (HPbHT + R)�1
(loop through unobserved model states)

6. Assemble the nobs + 1 � nens state matrix Xb ¼ ðxb

1; . . . ;

xb
nensÞ, where the ‘‘extra” row is the unobserved model state.

Note that the dimension of Xb is nobs + 1 � nens, instead of
nstate � nens, because we are only processing one unob-
served model state at a time.

7. Compute the nobs + 1 � nobs matrix PbHT. The elements of
PbHT that correspond to observations are taken directly
from HPbHT (computed in step 4), and are not re-computed
here.

8. Compute the Kalman gain, K = PbHT(HPbHT + R)�1
(loop through model ensemble members)

9. Perturb observations, yi ¼ �y þ f; f � Nð0;RÞ

10. Compute the nobs + 1 � 1 update vector, vi ¼ Kðyi �Hxb
i Þ

11. Update the unobserved state, xa
nobsþ1;i ¼ xb

nobsþ1;i þ vnobsþ1;i

(note we are processing one state variable at a time, so x
and v are scalars).

12. Check for physical realism, i.e., storages are not negative or
greater than capacity, and make appropriate corrections
(end looping through ensemble members)
(end looping through unobserved model states)
(end looping through time)

The EnSRF is implemented using the same method, with all ma-
trix square roots and inverses computed in step 5 before looping
through unobserved model states. Implementing the EnSRF only
involves computing the square root of matrices that are of dimen-
sion nobs � nobs, which, for the case of assimilating streamflow
observations, does not impose a significant computational cost
(there are less than 10 operational water level recorders in most
river basins in New Zealand).
7. Results and discussion

Ensemble simulations were run for the period 8th June–3rd July
2002 to illustrate the behaviour of the ensemble Kalman filter. Fig.
4 shows results from four simulations: (a) the control simulation
(no data assimilation); (b) the standard implementation of the
EnKF; (c) the EnKF, but with modelled and observed streamflow
transformed to log space before computing the Kalman gain; and
(d) the EnSRF in log space. It is immediately apparent that the stan-
dard implementation of the EnKF (Fig. 4b) results in somewhat er-
ratic streamflow simulations. This occurs because relationships
between streamflow and model states are non-linear, and, conse-
quently, state updates are exceptionally large in situations where
modelled streamflow is much higher than observed streamflow.
The performance of the Kalman filter is significantly improved
when streamflow is transformed to log space prior to computing
the Kalman gain (Fig. 4c). Note also that the log EnSRF performs
slightly better than the log EnKF (Fig. 4d), and is used in the
remainder of the paper.

It is possible that assimilating data at the basin outlet will im-
prove streamflow simulations at interior locations in the basin,



Fig. 4. Ensemble simulations for the Wairau at Barnetts Bank for (a) the control simulation (no data assimilation); (b) the standard implementation of the EnKF; (c) the EnKF,
but with modelled and observed streamflow transformed to log space before computing the Kalman gain; and (d) the EnSRF in log space. The light grey lines are individual
ensemble members, the grey line is the ensemble mean, and the thick black line is observations. In these simulations data was only assimilated at Barnetts Bank.
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and, similarly, that assimilating data at internal locations will im-
prove streamflow simulations at the basin outlet. To test these
ideas, Fig. 5 illustrates streamflow simulations for (a) the control
run (no data assimilation), (b) simulations where data is only
assimilated at the outlet (Barnetts Bank); and (c) simulations
where data is only assimilated at interior locations (Waihopai at
Craiglochart, Branch at Weir Intake, and Wairau at Dip Flat). Recall
that data from interior locations was not used for model
calibration.

Fig. 5 (middle column) shows that the RMSE of streamflow sim-
ulations at interior locations are actually degraded when data is
only assimilated at the outlet. This is not entirely surprising. The
state updates at interior locations depend on both the difference
between model simulations and observations at the outlet, and
the covariance between model states and the model equivalent
of the observations. Hence, model simulations at interior locations
will only improve if the time series of errors at interior locations is
similar to the time series of errors at the basin outlet. Consider for
example the streamflow simulations on around 14th June for
Branch at Weir Intake. In the control run streamflow is over-esti-
mated at Barnetts Bank but under-estimated at Branch at Weir In-
take. When only data from Barnetts Bank is assimilated, the state
updates still result in an under-estimate of streamflow at Branch.
As another example, consider the simulations at Wairau at Dip Flat.
Assimilating data at Barnetts Bank increases the magnitude of the
streamflow peaks at Dip Flat, but do not correct the timing errors.
The timing errors at Dip Flat are not apparent at Barnetts Bank, so
they are not corrected.

Fig. 5 (right column) shows a slight improvement in streamflow
simulations at Barnetts Bank over the control run when data are



Fig. 5. Ensemble simulations for all four sites in the Wairau, showing (a) the control run (no data assimilation); (b) data only assimilated at the outlet (Barnetts Bank); and (c)
data only assimilated at the interior locations (Waihopai at Craiglochart, Branch at Weir Intake, and Wairau at Dip Flat). The ensemble square root Kalman filter (EnSRF) is
used for data assimilation. As in Fig. 3, the light grey lines are individual ensemble members, the grey line is the ensemble mean, and the thick black line is observations. See
Fig. 2 for station locations.
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assimilated at interior locations. However, streamflow simulations
at Barnetts Bank are a little too high. This occurs because under-
estimates of streamflow are more pronounced at the interior
locations than at Barnetts Bank, and only assimilating at interior
locations results in state updates that are too large for the basin
as a whole. Note that assimilating data at interior locations does
improve streamflow simulations at the interior locations.

Another potential use of data assimilation is to transfer infor-
mation from gauged to ungauged basins. To test this idea, simula-
tions were performed when data was only assimilated at each of
the three interior locations. Fig. 6 shows that while simulations
do improve at the location where data are assimilated (compare
the simulations in Fig. 6 with the control run in Fig. 5), simulations
are degraded in all other locations.

The limited capability to propagate information between differ-
ent basins is likely due to inadequacies in modelling the spatial
variability of hydrological processes. Table 4 details correlations
between time series of streamflow at each of the observing sites
in the Wairau for the period 8th June–3rd July 2002, both for
observations and model simulations. The modelled correlations
are much higher than observed correlations for almost all station
pairs. This indicates that state updates in distant locations may
be too large.

Large spatial correlations in model output can occur due to
insufficient spatial variability in model forcing and model parame-
ters, or due to excessive correlation length scales used for model
perturbations. The large spatial correlations are evident in both
the deterministic and the probabilistic model simulations (Table
4), which suggests there is insufficient variability in model forcings
and parameters. Recall that spatially constant parameter multipli-
ers are used to adjust a priori model parameter estimates in each
sub-catchment. Some a priori model parameters are spatially uni-
form (for example, hydraulic conductivity, see Table 1), and other
a priori model parameters may have insufficient spatial variability
(for example, there can be considerable spatial variability in soil
depth within a land resource inventory soil polygon, but this vari-
ability is not reflected in the mean soil depth value assigned to
each sub-catchment). New parameter estimation methods are
needed to produce a priori spatial fields of model parameters,
and new calibration methods are needed to adjust the a priori
parameter estimates so that model simulations have the correct
spatial coherence.
8. Summary

This paper describes application of the ensemble Kalman filter
(EnKF) in which streamflow observations are used to update states
in a distributed hydrological model. We demonstrate that the stan-
dard implementation of the EnKF is inappropriate because of non-
linear relationships between model states and observations. Trans-
forming streamflow into log space before computing error covari-
ances improves filter performance. We also demonstrate that
model simulations improve when we use a variant of the EnKF



Fig. 6. Ensemble simulations for all four sites in the Wairau, showing (a) data only assimilated at the Waihopai at Craiglochart; (b) data only assimilated at Branch at Weir
Intake; and (c) data only assimilated at Wairau at Dip Flat. The ensemble square root Kalman filter (EnSRF) is used for data assimilation. As in previous figures, the light grey
lines are individual ensemble members, the grey line is the ensemble mean, and the thick black line is observations. See Fig. 5 for control simulations and Fig. 2 for station
locations.

Table 4
Correlation of the time series between station pairs

Station pair Observed Deterministic
simulationa

Model ensembles
(0.05,0.25,0.50,0.75,0.95)

Wairau at Barnetts Bank
vs. Waihopai at
Craiglochart

0.787 0.829 0.810, 0.843, 0.859, 0.876,
0.918

Wairau at Barnetts Bank
vs. Branch at Weir
Intake

0.706 0.988 0.941, 0.962, 0.971, 0.977,
0.982

Wairau at Barnetts Bank
vs. Wairau at Dip Flat

0.601 0.831 0.740, 0.790, 0.847, 0.876,
0.916

Waihopai at Craiglochart
vs. Branch at Weir
Intake

0.653 0.841 0.782, 0.850, 0.875, 0.896,
0.927

Waihopai at Craiglochart
vs. Wairau at Dip Flat

0.567 0.507 0.368, 0.506, 0.576, 0.623,
0.716

Branch at Weir Intake vs.
Wairau at Dip Flat

0.955 0.832 0.735, 0.796, 0.837, 0.873,
0.910

a The deterministic simulation is where model inputs and states are not
perturbed.
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[44] that does not require perturbed observations. Our attempt to
propagate information to neighbouring basins was unsuccessful,
largely due to inadequacies in modelling the spatial variability of
hydrological processes.

The methods for modelling model error in this paper are similar
to those used in other studies (e.g., [33,42]), but are still simplistic
and subjective. They require specifying errors in model inputs and
states, the decorrelation time, and correlation length scales. Reli-
able estimation of model errors is clearly critical – if error esti-
mates are erroneous, then the model updates will be sub-optimal.

More rigorous methods for quantifying model error are needed.
Examples are probabilistic precipitation estimation methods [10],
and methods to construct ensembles of multiple models with dif-
ferent parameter sets and structure [7,12]. A necessary attribute of
the ‘‘new” methods is the capability to adequately simulate the
spatial correlation structure of model states and fluxes, as state up-
dates in distant locations may be too large if the spatial correlation
is too high. Spatial correlations are easily over-estimated if spa-
tially constant parameter multipliers are used to adjust spatially
uniform parameters (as is done in this study). New methods are re-
quired to establish spatially variable a priori parameter estimates,
and new methods are required to adjust the a priori parameter esti-
mates so that model simulations have the correct spatial
coherence.

More attention should also be given to time lags between model
states and streamflow. In this study the state updates are based on
the instantaneous covariance between states and streamflow – this
can reduce the optimality of the state updates. Pauwels and De
Lannoy [45] recently introduced the bias-aware retrospective
ensemble Kalman filter (REnKF) that explicitly accounts for time
lags between model states and streamflow. They demonstrated
with synthetic experiments that the bias-aware REnKF can correct
for both errors in initial conditions and biases in precipitation data.
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Accounting for the impact of time lags between states and stream-
flow is part of an ongoing research effort.
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Appendix A. The TopNet distributed hydrological model

The TopNet model has two fundamental components: (i) simu-
lating the water balance over a number of sub-catchments
throughout a river basin, and (ii) routing streamflow from each
sub-catchment to the basin outlet.

A.1. State equations

There are five components of storage of water in a sub-catch-
ment. They are the canopy storage (Sc), snowpack storage (Ss), soil,
or root zone, storage (Sr), aquifer storage (Sa), and overland flow
storage (So). The movement of water in time t into and out of these
storages is described by the following system of five differential
equations

dSc

dt
¼ p� pt � ec

dSs

dt
¼ ps �ms

dSr

dt
¼ i� er � d

dSa

dt
¼ d� qb

dSo

dt
¼ qix þ qsx þ qb � qo

ðA1Þ

The rate terms on the right-hand-side of each equation are defined
below. For each discrete time step Dt, the individual equations in
(A1) are solved in order from top to bottom, not simultaneously,
taking advantage of analytical solutions where possible. This is done
to greatly reduce computation time.

A.2. Canopy storage

The time rate of change in canopy storage is modelled following
Ibbitt [20]. The canopy water state equation is

dSc

dt
¼ p� pt � ec ðA2aÞ

where p is the precipitation rate above the canopy, pt is the rate of
throughfall out of the canopy, and ec is the rate of evaporation from
the canopy. The precipitation rate p and the potential evaporation
rate are used as model inputs, and throughfall pt and canopy evap-
oration ec are modelled as a quadratic function of canopy storage
[20].

The rate of throughfall (pt) is calculated by

pt ¼ pf ðScÞ ðA2bÞ
where

f ðScÞ ¼
Sc

Cc
2� Sc

Cc

� �
ðA2cÞ
and Cc is the water holding capacity of the canopy. Physically, f(Sc)
represents the fraction of leaf area that is wet, relative to its maxi-
mum. Eqs. (A2b) and (A2c) signify that less precipitation is added to
canopy storage (Sc) – that is, there is more throughfall – as the can-
opy reaches its capacity (Cc).

Canopy evaporation (ec) is calculated as

ec ¼ epotcrf ðScÞ ðA2dÞ

where cr is a parameter used to quantify higher evaporation losses
from interception relative to the potential evapotranspiration rate
epot. The potential evaporation rate epot is computed using the
Priestley–Taylor method [30], with radiation terms estimated
empirically using the methods in Shuttleworth [39].

A.3. Snow storage

The rate of change of snow water equivalent storage is given by

dSs

dt
¼ ps �ms ðA3Þ

where ps is the snow throughfall rate through the canopy and ms

the snow melt rate. TopNet has several options for determining
the rates of snow accumulation and melt, but are not discussed here
because snow has a limited impact on the hydrology of the basin
examined in this study.

A.4. Soil storage

The basic soil or root zone state equation is

dSr

dt
¼ i� er � d ðA4aÞ

where i is the infiltration rate, er is the soil evaporation rate, and d is
the rate of drainage from the soil to the aquifer.

A.4.1. Infiltration
The infiltration rate i into the soil layer is limited by the canopy

throughfall rate pt minus the evaporation rate of the throughfall et,
and the maximum infiltration rate imax:

i ¼min½imax; pt � et� ðA4bÞ

where the evaporation from throughfall is determined by the po-
tential evaporative demand, i.e., epot – ec, not met by the canopy
evaporation:

et ¼min½epot � ec;pt� ðA4cÞ

The maximum infiltration rate is modelled using a Green–Ampt
formulation

imax ¼ K0e�zf =m zf þ wf

zf
zf < zr ðA4dÞ

where wf is the Green–Ampt wetting front suction, zf is the depth of
the wetting front and zr is the soil depth. The parameters K0 and m
define the vertical saturated hydraulic conductivity profile of the
subsurface. When zf reaches zr, the soil is completely saturated
and imax = 0. The depth to the wetting front is approximated by

zf ¼
Sr

hsat
ðA4eÞ

where Sr = hzr, and h and hsat are the relative soil water contents at
actual and saturated conditions, respectively.

A.4.2. Soil evaporation
Evaporation from the soil er is driven by the potential evapora-

tive demand not met by either the canopy or throughfall evapora-
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tion, or epot � (ec + et). Furthermore, er is a function of the relative
water content h

er ¼ ðepot � ec � etÞmin
h

hpa
;1

� �
ðA4fÞ

where hpa is the plant-available relative water content when the
plant-available water storage is saturated. Thus, for h < hpa, er de-
creases linearly to zero as the soil moisture approaches zero.

A.4.3. Drainage
The drainage rate d is a power function of the relative soil water

content and is given by

d ¼ Krh
c ðA4gÞ

where Kr is the saturated hydraulic conductivity at zr (the bottom of
the soil layer) and the exponent c is a function of the unsaturated
hydraulic properties of the soil. The value of Kr is calculated as

Kr ¼ K0e�zr=m ðA4hÞ
A.4.4. Sub-grid variability and surface water–groundwater
interactions

Eqs. (A4a–h) are only strictly valid for cases where the depth to
the water table is lower than the depth of the soil layer (Fig. 1).
TopNet uses TOPMODEL concepts to simulate sub-grid variability
in the depth to the water table [5,6]. TopNet includes the option
of using the original exponential subsurface transmissivity rela-
tionship in TOPMODEL [5], or a power-law representation for
transmissivity [1,15,22,35]. Here we only express the TopNet mod-
el equations as they relate to the exponential transmissivity func-
tion because that is the one used in this study.

In TopNet, a catchment area is divided into three zones based
on the local depth of the water table with respect to the ground
surface and the bottom of the soil layer. In areas where the water
table is below the bottom of the soil layer, the catchment soil layer
is ‘‘uninfluenced” by the local water table. In areas where the water
table lies between the soil surface and the bottom of the soil layer,
the soil layer is ‘‘influenced” by the water table. Lastly, in areas
where the water table is a at or above the soil surface, the soil is
‘‘saturated” (see Fig. 1).

The local depth to the water table z is computed directly from
the local topographic index, a/tanb, where a is the area per unit
contour width draining through a given point from upslope, and
tanb is the local slope. Areas with high index values indicate areas
of topographic convergence and areas that tend to saturate first.
The local depth to the water table is

z ¼ �zþm½k� lnða= tan bÞ� ðA4iÞ

where �z is the sub-catchment spatial average of the depth to the
water table, m is a depth scaling parameter, and k is the spatial
average of the transformed topographic indices ln(a/tanb)

k ¼ 1
A

Z
A

lnða= tan bÞ ðA4jÞ

where A is the sub-catchment area.
The fractional area of the saturated zone /sat is determined from

the soil parameters and the cumulative distribution function (CDF)
of the transformed topographic index j, given by ln(a/tanb), such
that

/sat ¼ Probðj > jsatÞ ¼ 1� CDFðjsatÞ ðA4kÞ

where jsat is calculated by

jsat ¼
�z
m
þ k ðA4lÞ
The fractional area of the uninfluenced zone /unf is determined
similarly, but accounts for the depth of the soil layer. The fractional
area is given by

/unf ¼ Probðj < junfÞ ¼ CDFðjunfÞ ðA4mÞ

where junf is calculated by

junf ¼
�z� zr

m
þ k ðA4nÞ

The fractional area of the influenced zone /inf is simply
1 � /sat � /unf.

The fractions of the catchment that are ‘‘saturated”, ‘‘influ-
enced” and ‘‘uninfluenced” (i.e., /sat, /inf, and /unf) defines the
interaction of the water table with the soil zone, and the fluxes
in Eq. (A4a) are modified to account for the ‘‘extra” water in the soil
layer. This is formalized as follows. Let Sr be the sum of the soil
water in each zone such that

Sr ¼ Sunf þ Sinf þ Ssat ðA4oÞ

where the subscripts unf, inf, and sat denote the uninfluenced,
influenced, and saturated zones, respectively. The change in soil
water is then the sum of the change in soil moisture in each zone:

dSr

dt
¼ dSunf

dt
þ dSinf

dt
þ dSsat

dt
ðA4pÞ

The soil layer state equation can be expressed more fully as

dSr

dt
¼ /unfðiunf � eunf � dunfÞ þ /infðiinf � einf � dinfÞ

þ /satð�esat � dsatÞ ðA4qÞ

where /unf, /inf, and /sat represent the fractional areas of the catch-
ment that are uninfluenced, influenced, and saturated, respectively,
and the other terms are as given in (A4a) but subscripted to denote
to which zone they pertain. For convenience, we impose the condi-
tion that the relative change in soil moisture storage is the same
across all zones, such that

dSr

dt
¼ 1

/unf

dSunf

dt
¼ 1

/inf

dSinf

dt
¼ 1

/sat

dSsat

dt
ðA4rÞ

The rates in the state equation for the uninfluenced zone (i.e.,
the first set of terms on the right-hand-side of Eq. (A4q)) are com-
puted using Eqs. (A4b) through (A4h) with the following substitu-
tions: iunf for i, eunf for er, dunf for d, and Sunf for Sr.

The state equation for the influenced zone (i.e., the second set of
terms on the right-hand-side of Eq. (A4q)) is adjusted to account
for the presence of the water table within the soil layer. The value
of Sinf is computed as a weighted average of the saturated and
unsaturated portions of the soil column:

Sinf ¼ Sunf
z
zr
þ zrhsat

zr � z
zr

ðA4sÞ

The uninfluenced soil zone rate Eqs. (A4b) through (A4h) are
also used to compute infiltration and evaporation, substituting iinf

and einf for i and er, respectively. However, the adjusted soil mois-
ture for the influenced zone is h = Sinf/zr and adjusted wetting front
depth is zf = Sinf/hsat. Unlike infiltration and evaporation, the drain-
age dinf is determined from the equality in (A4r), hence

iunf � eunf � dunf ¼ iinf � einf � dinf ðA4tÞ
When forcing is positive, or evaporation is zero, (A4q) may be
solved for dinf as

dinf ¼ dunf � iunf þ iinf ðA4uÞ

on condition that dinf >= 0. Otherwise dinf = 0. When forcing is neg-
ative, or infiltration is zero, (A4t) becomes

dinf ¼ dunf þ eunf � einf ðA4vÞ
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In the saturated zone we assume there is no infiltration (i.e., all
inputs are saturation excess runoff). Because the soil layer is satu-
rated, evaporation from the soil is not soil-moisture limited, thus
esat is given by

esat ¼ ½epot � ðec þ etÞ� ðA4wÞ

Similar to the influenced zone drainage, the saturated zone
drainage dsat is determined from the equality in (A4r), hence

iunf � eunf � dunf ¼ �esat � dsat ðA4xÞ

When forcing is positive, or evaporation is zero, (A4x) may be
solved for dsat as

dsat ¼ dunf � iunf ðA4yÞ

on condition that dsat >= 0. Otherwise dsat = 0. When forcing is neg-
ative, or infiltration is zero, (A4x) becomes

dsat ¼ dunf þ eunf � esat ðA4zÞ
A.5. Aquifer storage

The groundwater state equation in (A1) can be rewritten as

�hdr
d�z
dt
¼ d� qb ðA5aÞ

where qb is the aquifer discharge rate, or rate of baseflow. In (A5a)
the change in aquifer or groundwater storage is set equal to the
change in the basin average water table depth �z times the drainable
water content hdr.

The drainage rate is the sum of the drainage from each of the
soil zones, or

d ¼ /unf dunf þ /inf dinf þ /satdsat ðA5bÞ
The baseflow rate is calculated by the following:

qb ¼ K0me�ke��z=m ðA5cÞ
where all the terms are as defined previously.

A.6. Surface storage

Surface runoff generated from a basin will be delayed as it trav-
els overland before reaching the river network, resulting in a basin
surface storage. The overland flow pathways include hillslope sur-
faces and transient and therefore unresolved stream channels. Sur-
face runoff, or basin outflow, can be generated in three ways: as
infiltration-excess runoff qix, saturation-excess runoff qsx, or as
subsurface discharge qb. The state equation for surface storage is

dSo

dt
¼ qix þ qsx þ qb � qo ðA6aÞ

where qo is the basin outflow from the surface storage to the river
network. It is assumed that all three sources of basin discharge
(infiltration-excess, saturation-excess, and subsurface discharge)
enter the surface store before entering the river network.

Infiltration-excess runoff qix occurs in the uninfluenced and
influenced portions of the catchment when the forcing exceeds
the infiltration rate. The infiltration-excess runoff rate is calculated
for any point as

qix ¼maxðpt � et � i;0Þ ðA6bÞ

However, the infiltration rates may differ for the uninfluenced and
influenced zones due to the differing soil water contents in each
zone (see Section A.4), resulting in distinct infiltration-excess runoff
rates from each zone. The fractional area-weighted infiltration-ex-
cess runoff is calculated as

qix ¼ /unf qix;unf þ /inf qix;inf ðA6cÞ
where qix,unf and qix,inf are the infiltration-excess runoff rates from
the uninfluenced and influenced zones, respectively.

Saturation-excess runoff occurs in the saturated portion of the
catchment when forcing is positive. The infiltration is set to zero
and the saturation-excess runoff rate is calculated by

qsx ¼ max½/satðpt � etÞ;0� ðA6dÞ

The basin discharge qo is subject to a time delay, where the de-
lay is computed using the frequency distribution of overland flow
residence time s. The residence time distribution f(s) is calculated
for each basin as the empirical frequency distribution of overland
path lengths x divided by a constant overland flow velocity v:
i.e., f(s) = f(x/v).

The surface storage in time is calculated by tracking the volume
of water associated with each residence time s. Let dV(s) = M(s)ds
be an infinitesimal volume of surface water existing at some time t
that is destined to leave the surface of the basin after some time s
has elapsed, where M is the rate of change in volume with respect
to s. The total basin surface storage at time t across all s is

So ¼
Z 1

0
MðsÞds ðA6eÞ

The change in dV(s) with time is given by

d
dt
½dVðsÞ� ¼ qinðsÞ � qoutðsÞ ðA6fÞ

where qin(s) and qout(s) are the inflow to, and outflow from, the
volume of water with residence time s. The inflow is partly com-
posed of the various sources of surface water runoff, which are
weighted by the frequency distribution of residence times f(s).
The remaining inflow comes from the volume of water with resi-
dence time s + dt:

qinðsÞ ¼ ðqix þ qsx þ qbÞf ðsÞ þ
dVðsþ dtÞ

dt
ðA6gÞ

The outflow over dt is simply the volume of water with resi-
dence time s:

qoutðsÞ ¼
dVðsÞ

dt
ðA6hÞ

The outflow rate from the basin into the river network is

qo ¼
dVðs ¼ 0Þ

dt
ðA6iÞ

In practice, the residence time distribution f(s) is discretized
and the interval size Ds is equal to the simulation time step, i.e.,
Ds = Dt. Eq. (A6f) is solved for each discrete value of s P 0 up to
some predefined maximum value of s.

The surface storage is illustrated graphically in Fig. A1. The top
plot shows for an example sub-catchment both the cumulative
probability distribution of distance to the stream (meters), and
the corresponding probability distribution of travel times (sec-
onds), obtained by f(s) = f(x/v). Here the probability distribution
of travel times is discretized into hourly time steps. The bottom
three plots in Fig. A1 show respectively example inflow
(qix + qsx + qb), storage (S0) for time s = 5, and basin discharge (q0),
as computed using Eqs. (A6e) through (A6i). Note the delay be-
tween the inflow (qix + qsx + qb) and outflow (q0) time series.

A.7. Flow routing through the river network

Flow routing in TopNet is modelled using a one-dimensional
Lagrangian kinematic wave routing scheme, in which runoff pro-
duced by each sub-catchment is propagated as ‘‘particles” through
the stream network to the basin outlet.



Fig. A1. Depiction of the time delay of runoff through the transient and therefore
unresolved stream network in headwater river basins. The top plot shows the
cumulative probability distribution of the distance to the stream and the
corresponding probability distribution of travel times (seconds), obtained by
f(s) = f(x/v). The bottom three plots show respectively example inflow
(qix + qsx + qb), a snapshot of storage (S0) for time t = 5, and basin discharge (q0),
as computed using Eqs. (A6e) through (A6i).
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We assume the channel is hydraulically wide, and that the
water level depth (y) is a good approximation for the area of the
channel. Given Manning’s stage-discharge relationship

q ¼
ffiffiffi
S
p

N
ya ðA7aÞ

where S is the channel slope, N is Manning’s n, and a is a parameter
(5/3), the particle celerity v is

v ¼ dq
dy
¼ a

ffiffiffi
S
p

N

 !1
a

q
a�1
að Þ ðA7bÞ
and the travel time for an individual flow particle over the length of
a channel segment, s, is

s ¼ L
v

ðA7cÞ

where L is the length of the channel segment.
Time is used for particle tracking in the following way. In a gi-

ven channel segment we have knowledge of the time a flow parti-
cle entered that segment, and, based on the estimated travel time
(Eq. (A7c)), we have knowledge of the time that the flow particle is
expected to exit the segment. If the particle is computed to exit the
segment before the end of the time step, then that particle is
flagged as ‘‘routed” and is moved to the downstream river seg-
ment. Otherwise, the flow particle is flagged as ‘‘non-routed”,
and remains in the given channel segment. In this context earlier
entry times imply that a flow particle is nearer to the end of a
channel segment.

A special (but common) case occurs on the rising limb of the
hydrograph, where faster particles merge with slower particles to
form a discontinuity known as a kinematic shock. When this oc-
curs, flow particles on either side of the discontinuity are merged
and assumed to travel at the same celerity [48].

Our network implementation of the Lagrangian routing model
requires merging flow from multiple upstream reaches. This is
complicated because particles from different upstream reaches en-
ter the downstream reach at different times. For each particle that
exits one of the upstream reaches, we create a new particle at the
same time in all of the other upstream reaches. The particle in-
jected into the downstream reach is then equal to the particle that
exited an upstream reach plus the sum of the new particles in all of
the other upstream reaches. The new particles in a given upstream
reach are produced by linearly interpolating between the last par-
ticle that exited that reach and the particles that are still in that
reach.

The state variables in the river network are therefore all times
and flows of the individual particles, and timestep-average stream-
flow for each reach in the stream network is the weighted average
of all particles that exit a reach in a given time step. Timestep-aver-
age streamflow is therefore a diagnostic variable, not a state
variable.
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