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A B S T R A C T

Unregulated, privately owned water supplies, including groundwater wells, are relied upon extensively, parti-
cularly in rural and remote regions. While adequate stewardship behaviors (water testing, treatment, and
maintenance) have been shown to decrease the incidence and frequency of faecal indicator organism (FIO)
presence and, by extension, the risk of pathogenic ingress, contaminated private water supplies continue to
constitute a significant public health risk. Recognizing that innovative approaches are needed to bolster well
stewardship, this paper identifies and assesses 35 tools (smartphone and web-based applications) to better un-
derstand components, functionality, strengths, and weaknesses. Applications for both data collection and risk
communication were identified; however, none adequately assess(ed) risk using space-, time- or source-specific
inputs (local hydrogeology, climate, groundwater reliance). Well designed applications integrated with crowd-
sourced data, environmental data, and models of risk provide an opportunity for enhanced stewardship of
private well water resources.

1. Introduction

Access to a reliable supply of safe drinking water is both a basic
human right [15] and a powerful environmental determinant of health
[18]. The importance of safe drinking water is widely recognized, yet
occurrences of waterborne disease continue to occur regularly in both
developing and developed regions [39]. While water contamination
remains a concern in all regions of the world, recent research has shown
that increased risks are frequently associated with the susceptibility of
private (unregulated) groundwater supplies to contamination by enteric
pathogens [20,39,1]. Unlike residents receiving water from regulated
public networks, private well users are typically responsible for main-
taining, treating, and potentially upgrading their own systems, as well
as water quality monitoring, all of which place a burden on both time
and financial resources.

Private well owners frequently fail to test their water at appropriate
intervals, with many failing to test at all [36,37], thus increasing their

health risk through unknown exposure to waterborne pathogens. In the
Republic of Ireland, Hynds et al. [22] documented that increased water-
source knowledge among well owners corresponded to an increased
likelihood of testing. Similarly, Kreutzwiser et al. [29] reported that
increased awareness of contamination risks among well users in On-
tario, Canada was correlated with improved well maintenance activ-
ities. Increases in testing frequency have also been documented when
well owners are aware of local water quality problems [13]. In focus
groups conducted by Jones et al. [26], private well owners expressed
support for an accessible mapping and data sharing system that would
encourage well water testing. Chappells et al. [5] found similar support
for a system for dissemination of well contamination information.
Given that a lack of knowledge represents a significant barrier to
stewardship [6], it follows that appropriate communication can facil-
itate and encourage desired behaviors. For example, it has been re-
commended that private well owners be provided guidance regarding
how often they should test their water, what they should test for, and
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where they can submit samples [38].
To date, several communication strategies have been utilized to

disseminate well stewardship information, most of which have reported
limited success. An investigation of arsenic risk exposure among private
well users in Nova Scotia, Canada, found that official government
factsheets were largely failing to reach well owners [5]. In Ireland,
Hynds et al. [24] investigated the efficacy of a national hydrological
risk communication strategy (focused on domestic wastewater treat-
ment systems) comprising several dissemination methods. Overall, this
campaign only increased awareness modestly, with little or no beha-
vioural change found. In part, this can be explained by the campaign’s
design, a sweeping information push without adequate regard for the
existence of numerous target demographics. Studies have found deficits
in well-stewardship knowledge most prominent among younger well
owners, Refs. [26,37], indicating that knowledge translation strategies
aimed at younger demographics are required.

In 2016, an expert panel convened by the National Centers for
Disease Control and Prevention (CDC) recommended development and
implementation of novel private well stewardship outreach and inter-
vention strategies [14]. According to Hynds et al. [23], “bottom-up”
approaches, whereby well stewardship is facilitated via “pocket tech-
nologies”, may offer a path forward, particularly with respect to
younger individuals and households. More recently, the Sustainable
Development Goal (SDG) 6 Synthesis Report noted an innovation deficit
in water management, calling for increased use of data and smart
technologies to address global water challenges [48]. Accordingly, this
scoping review sought to i) identify existing smartphone applications
(apps) and web-based tools pertaining to water quality and health, ii)
assess the thematic scope and technical capabilities of those existing
tools, including technical limitations and omissions, and iii) offer re-
commendations for the design, functionality, and evaluation of future
tools for private well stewardship. The resulting recommendations are
intended to guide the development of water-related smartphone apps,
specifically those for private well stewardship.

2. Methods

To identify the nature and extent of available evidence, a global
scoping review was undertaken. Scoping reviews provide a preliminary
assessment of the potential size and scope of available literature, in-
cluding ongoing research [19]. The primary research question guiding
the review was:

What smartphone apps and web-based tools are available to non-
experts that pertain to the impact of water quality on human health?

For the purposes of this investigation, “tools” were defined as i)
smartphone apps, or ii) webpages that present real-time data or permit
user entry of source-specific data for tailored information (i.e. not
strictly repositories of informational material or official monitoring
programs). “Non-experts” refer to those who would use the tool outside
of a professional or specialist context. While the initial focus was on
tools addressing the impact of water quality on human health, a pre-
liminary review of the literature revealed a paucity of smartphone apps
(n=5) devoted to water quality-related health risks. Consequently,
inclusion criteria (Table 1) for apps were expanded to include those
related to ecological water quality and watershed management, while
criteria for web-based tools were limited to those pertaining to both
water and health (i.e. water-related health). Given the sheer number of
health-related apps available (e.g. fitness, medication adherence, self-
diagnosis, etc.), expansion into the health domain was avoided.

Since this review sought to identify tools for use by non-experts,
most of which are not discussed in academic literature, preliminary
searches were undertaken using the Google search engine, the most
frequently employed global internet search engine [8], and most likely
point of contact for non-experts seeking tools of interest. A total of 20
searches using different search term combinations (Table 1) were

completed on August 15th, 2018. Search terms were informed by the
explicit research question and a preliminary review of available re-
sources. A grey literature representative sampling search strategy ana-
logous to that used by Godin et al. [17] was employed; the title and
associated “snippet” (short text description) of the first 100 results for
each search were reviewed, equating to 2000 “snippet” reviews. The
authors acknowledge that, despite best intentions, an unknown number
of tools may have been overlooked given the sheer extent of the
worldwide web and locally relevant tools not established to be highly
visible online. Despite this limitation, the chosen approach ensured
relevance, manageability, and captured all tools readily available for
public use. Though unlikely comprehensive, the authors believe a
highly representative “snapshot” (approaching comprehensive) was
attained.

Of the 2000 search results screened for specific reference to a tool,
336 were deemed to contain potentially relevant content (Fig. 1). Upon
exclusion of duplicates and irrelevant tools, 96 unique tools remained.
Once selected for further review, a secondary search was completed for
each tool using both Google and Google Scholar to identify available
supplementary literature. Four additional tools of interest were iden-
tified during this search and subsequent literature review, resulting in
100 unique references being assessed for eligibility (i.e. non-expert,
water-related). Of these, 65 were excluded based upon the following
exclusion criteria: lacking thematic relevance (n= 44), developed for
professional use (n= 11), lacking adequate information (e.g. tool was
mentioned, but no description could be found) for full review (n=10).

Through an iterative process based on the tools themselves, data for
18 variables pertaining to tool features and technical components
(Supplement 1) were extracted from all available sources, including
tool use (where possible). Extracted data were managed within MS
Excel© 2016, and tools were categorized by 11 prominent technical
features (Table 2).

3. Results

In total, 35 tools met the inclusion criteria (Supplement 2). These
tools reveal significant diversity in the thematic focus, degree of user
interaction, and technical complexity of available tools, including fea-
tures pertaining to: data entry, data modeling, GPS, visuals and maps,
registration, social media integration, and reminders (Supplement 1).
Two broad classes emerged, namely i) those designed for data collec-
tion (n=22), and ii) those dedicated to risk communication (n=13)
(Fig. 2). Each class is further divided into four categories according to
functionality: smartphone apps, interactive websites, data entry me-
chanisms, data types, data sharing, and outputs and interactions (Fig. 2,
Table 2).

Smartphone apps involving participation of citizens in water-related
data collection represent nearly two thirds of the tools documented,
while no data collection tools employed website-based technology.
Thematically, these smartphone tools pertain to water quality, stream
depth, and water table level (Supplement 2). Among four of the seven
apps supporting in-situ scientific analyses, supplementary water quality
test kits and materials can be purchased (n=3) or are provided
(n= 1), with common analytes including pH, temperature, nitrate le-
vels, and turbidity. Among data collection tools generally, two use
water images to assess water quality while others capture images of
water sources and GPS data to enable location-specific analyses. Many
apps employ unique strategies to engage users and promote participa-
tion. For example, some allow users to share data on social media ac-
counts; others have “gamified” their apps by facilitating competition
and rewarding participation. Nearly half of identified tools make data
publicly available, frequently using maps. Most data collection tools
request or require registration/login to improve user experience by
saving user data and preferences. While smartphone apps are the most
common data collection tool, they are not used exclusively. Two short
messaging service (SMS) based data collection tools were documented,
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both of which involve citizens observing stream depth using in-situ
gauges. For one tool (CrowdHydrology), SMS was selected instead of a
smartphone app due to the relative simplicity and ubiquity of SMS, and
apprehension that implementation complexity associated with smart-
phones would inhibit spontaneous participation in opportunistic citizen
science endeavors [12].

In the risk communication domain, eight interactive websites
without accompanying apps were documented, six of which are dedi-
cated to drinking water quality, primarily groundwater (Supplement 2).
These tools require user input of water test results and/or private well
characteristics, with users subsequently receiving generalized outputs
regarding potential health risks and recommendations for contamina-
tion mitigation. In this domain, each water quality-related tool permits

user input of standard FIO testing data and provides subsequent result
interpretation. For example, the Rural Water Quality Information Tool
(RWQIT) is an interactive website which interprets FIO test results,
among other chemical and physical parameters [10]. After users enter
their test results into the program, RWQIT identifies areas of risk on a
parameter specific level and reports that risk using colour coded sym-
bols (Elgert, 2015). If water quality does not meet the Canadian federal
water quality guidelines, information pertaining to water treatment and
source protection is provided. It is worth noting that only three iden-
tified tools are equipped to interpret results of direct enteric pathogen
enumeration. All three tools interpreted results for two pathogens,
Giardia lamblia and Cryptosporidium, effectively acknowledging the high
costs and low levels of available data associated with enteric pathogen

Table 1
Criteria used to define tool inclusion and exclusion, with 20 search terms combinations used in the scoping review search strategy.

Criterion Inclusion Criteria Exclusion Criteria

Year of tool development Any None
Language (literature) English Non-English
Tool audience Non-expert Professionals/Specialists
Information availability Sufficient to extract relevant features/components Sufficient to extract relevant features/components
App type Smartphone-based Website-based Downloadable excel spreadsheet
Theme Water quality-related health risks

Microbial water quality
Ecological water quality
Watershed management

Water quality-related health risks
Microbial water quality

Swimming pool or hot-tub

Search Terms

(‘water’) AND (‘citizen science’ OR ‘crowdsource’)
(‘water’ OR ‘groundwater’) AND (‘quality’ OR ‘risk’) AND (‘application’ OR ‘smartphone app’ OR ‘tool’)
(‘water’) AND (‘citizen science’ OR ‘crowdsource’) AND (‘application’ OR ‘smartphone app’ OR ‘tool’)

Fig. 1. Review protocol employed during current study including results of literature identification, relevance screening and inclusion/exclusion criteria.

T. Hoffman, et al. Water Security 6 (2019) 100026

3



enumeration in both surface and groundwater.
Two interactive risk communication websites provide water quality

information for recreational surface waters. The data presented are
sourced from local authorities and use existing FIO records to forecast
future water quality status. Thematically comparable to these inter-
active webpages, three smartphone apps exist to relay recreational
water quality information to users. These apps also disseminate water
quality information sourced from monitoring completed by local au-
thorities. When tests for a specific location indicate adverse water
quality, risk information is communicated to users via the smartphone
app. Two smartphone apps that serve primarily as evidence repositories
for reference by users were also noted, both of which pertain to
drinking water, with one specific to private wells. While these apps
largely mirror traditional web-pages, the Well Owner App includes a
scheduling feature for water testing, well maintenance, and source
protection. Know Your H20?, The second evidence repository app,
employs a decision tree based on solicited user information, generalized
scientific principles, and regulatory standards.

Among tools meeting the eligibility criteria, a lack of reported
evaluations was noted. Just 10 tools (29%) were described in peer re-
viewed academic literature, conference proceedings, or conference
abstracts. Formal evaluations of any kind were only documented for

seven tools (20%) (Table 3), with the tool interface investigated in just
one study (3%).

4. Discussion

Presently, more than half of the world’s population use the internet
and two-thirds use mobile phones, of which approximately half are
characterised as ‘smart’ devices [27]. With smartphones contributing to
a greater share of web traffic than all other devices combined [27], a
significant opportunity exists to employ smartphone-based technologies
as both risk assessment and knowledge translation mechanisms for
private well stewardship. While access to technology, including
smartphones and associated apps, is increasing globally [27], global
discrepancies regarding access to smart technologies prevail. For ex-
ample, gaps in access fall along gender and age groups. In low-income
countries where only 20% of men use the internet, women’s access is
6% lower [25]. Moreover, while more than 70% of youth (age 15–24)
are online globally, it is estimated that less than 10% of people over the
age of 75 are connected to the internet compared to an overall access
average of 48% [25]. Geographic inequalities are also prominent.
Specifically, mobile-broadband subscriptions and internet use are at
least double in high income countries as compared to low- and middle-

Table 2
Descriptions of the defining features used for tool classification, including a matrix of category-specific features (Categories 1–8 in Table 2 correspond with categories
1–8 in Fig. 2).

Defining Feature Description Categories

Data Collection Risk Communication

1 2 3 4 5 6 7 8

Smartphone App Smartphone app is available for data collection or risk communication ✓ ✓ ✓ ✓ ✓ ✓
SMS Data Entry Data collection is completed using SMS data entry (no smartphone app) ✓
Interactive Website Risk communication is conducted using an interactive webpage (no smartphone app) ✓
Public Data Sharing Portal Data collected using the tool can be viewed on a publicly accessible webpage ✓ ✓
No Public Data Sharing Portal Data collected using the tool is not accessible to the public via a webpage ✓
Warning System Real time water quality information (FIO-based) sourced from professionals is made

accessible to the public
✓

Evidence Repository Evidence such as guidelines, recommendations, etc. is synthesized and presented to users ✓ ✓
Visual Observation Data is collected by users making visual observations, but not performing analyses on

physical characteristics
✓

Physical Analyses Data is collected by users conducting physical (including FIO) analyses, often supplemented
by visual observations

✓

Reminder Service Reminders for behaviors (i.e. water testing, well maintenance) can be scheduled and sent to
users

✓

Decision Tree Users answer a series of questions, leading to a “diagnosis” and recommendations ✓

Number of tools in category 10 7 3 2 8 3 1 1

Fig. 2. Flow chart of 35 documented tools delineated into eight categories according to technical capabilities (e.g. inputs, outputs, form, platform), highlighting
future opportunity for the development of a ninth category that combines data collection and risk communication.
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income countries [25]. There is similar evidence of urban versus rural
divides, with rural residents experiencing lower access [25]. Apart from
two tools developed for use in India and Kenya, those identified here
were designed primarily for use in high income regions. A skew towards
English language tools was also noted. While these trends likely mirror
the true nature of available tools, they may reflect bias in the review
methods, which relied on English keywords and only considered lit-
erature available in English.

Several lessons can be drawn from the array of tools described, in-
cluding awareness of the advantages and disadvantages of documented
tool features (Table 4). Among tools assessing and communicating
drinking water-related risks, an overarching limitation is that they
provide users generalized evidence that fails to adequately consider
space, time, and source-specific characteristics. None consider the
specific geographic location of the water source in terms of hydro-
logical, climatic, geological, and biological contexts. It is essential that
future water security-related apps utilize geographic information to
provide users spatiotemporal-specific recommendations, as water con-
tamination is time-dependent and significantly associated with geo-
graphic place. Elucidating this point, Hynds et al. [21] found that the
risk of private groundwater contamination is influenced by several
factors linked to land use, geology, and climate, including: local bed-
rock type, local subsoil type and depth, septic tank setback distance,
and local antecedent precipitation. Access to an accurate geographic
identifier is thus necessary for reliable collation (via automation or
user-input) of these variables, and ultimately for informing risk as-
sessments and spatiotemporally specific mitigation [30].

While the classification system that emerged can be applied to chart
commonalities and differences between existing tools in other domains,
it was used here to identify gaps in application functionality as they
pertain to the needs of private well owners. A key gap is that no existing
water-related smartphone apps combine data collection and risk com-
munication capabilities to provide users with context-specific risk as-
sessments, recommendations, and information (Fig. 2). Interventions

supporting knowledge translation can play a valuable role in private
water source management [41]. While none of the applications were
comprehensive from this perspective, the scheduling feature for water
testing, well maintenance, and source protection is notable, as re-
minders for water testing have been suggested as a mechanism by
which private well water testing frequency can be increased [26,29].
Centralised information repositories, educational resources, and water
professional directories are also useful and convenient resources for
private well owners to engage with.

Guided by insights derived from the tools reviewed here, including
their strengths, weaknesses, and gaps, elements of an ideal tool to
support enhanced private well stewardship have been developed
(Table 5). Any tool needs to be functional across iOS, Android, and web-
based platforms, and capable of multiple language support. A user ac-
count is important not only to store individual profiles for return visits,
but also to protect the privacy of individuals and their data, particularly
when utilizing water quality and geographical location data. A start-up
survey provides the necessary baseline assessment and context upon
which risk profiles can be built. While many tools use GPS coordinates
for location, these need to be used to the maximum extent to harness
the use of pertinent external geospatial databases (e.g. weather, land
use). Data entry can be used to upload, store, retrieve, and remind.
Back-end risk models are important value-adds to convert inputted data
into useful information for end users. Notifications support awareness
and positive behaviour change through alerts and reminders. The ad-
ditional provision of a resource repository aids users in accessing timely
and trustworthy information.

Conceptually, a coupled-systems approach to enhancing private
well stewardship has been articulated [9] that combines geospatial
pathogen transport models with user knowledge and practices to inform
the development of an interactive app for well users and public health
professionals. An app currently under development that begins to close
this gap is the Groundwater Risk Application for Local Evaluation
(GRAppLE), which will allow users to both enter data and receive

Table 3
Summary of evaluations for documented tools, including tool name, evaluation focus (i.e. data quality, scope of use, tool interface), primary evaluation findings,
reference, and reference type.

Tool Name Evaluation Focus Primary evaluation findings Reference Reference Type

Data Quality Scope of Use Tool Interface

Crowd Hydrology ✓ ✓ 1) Stream gauge location influenced amount of data submitted
2) A single motivated user submitted substantial percentage of data
3) Crowdsourced data for stream level is accurate

[35] Peer-Reviewed Journal

TransWatL ✓ ✓ 1) Substantial engagement (> 1000 measurements in first year)
2) SMS data entry reduced barriers to participation
3) Crowdsourced data is similar quality to automatic radar data

[50] Peer-Reviewed Journal

HydroColor App ✓ 1) Data is most accurate when collected under certain favorable
conditions
2) Various app improvements are needed to improve data quality

[32] Peer-Reviewed Journal

CrowdWater ✓ 1) Volunteers generally estimate the relative water level accurately
2) Overall, crowdsourced streamflow data is highly uncertain

[49] Conference Abstract

CreekWatch ✓ 1) Data was useful for managers and posed few barriers to entry for
users
2) Users want to filter the data, download it, view it on map and in list
3) Minor adjustments to the app interface (i.e. button size) required

[28] Conference Proceedings

✓ ✓ 1) Global engagement (> 2000 reports in first two years) clustered
around cities
2) Data submission more likely when streamflow is higher
3) User observations correlated with documented flow percentiles

[11] Conference Abstract

FreshWater Watch ✓ ✓ 1) 30% of volunteers trained participated in data collection
2) A few engaged volunteers contributed majority of data
3) Crowdsourced data quality was comparable to laboratory quality

[45] Peer-Reviewed Journal

✓ ✓ 1) Global engagement (> 15,000 datasets, > 2000 users)
2) Most use in France, Singapore, and the UK
3) Variation in engagement, data quality, and procedures between
countries

[34] Conference Abstract

Eyeonwater ✓ 1) Several problems that can affect data quality were encountered
2) More attention should be given to these problems in future work

[40] Peer-Reviewed Journal
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source-specific contamination risk assessments [23] based on a sim-
plified regression-based risk model. GRAppLE will concurrently employ
smartphone GPS functionality to capture the user’s location, permitting
retrieval of local model inputs (groundwater vulnerability, subsoil type,
bedrock geology, and antecedent precipitation) from validated shape-
file datasets and weather networks.

The relative absence of evaluations in the literature (Table 3) makes
it difficult for those seeking to develop future tools to learn from the
experiences of previous projects, and for designers to iteratively im-
prove their tools. It also indicates that tool evaluation is under-
appreciated in the overall tool development and implementation pro-
cess. To fill this gap, mechanisms for future evaluations should be
considered by those seeking to develop and employ water quality-re-
lated tools. The authors consider that an existing instrument, the Mobile
App Rating Scale (MARS) published in 2015 as a tool for assessing the
quality of mobile health apps [46], may be suitable for informing,
improving, and formalising the process. MARS synthesises a total of 349
app criteria from 25 publications to create six categories for assessment
(Supplement 3).

While MARS has been employed as an evaluation tool for numerous
health-related smartphone apps [43,4,44], it does not explicitly attend
to app features pertaining to GPS/GIS. Unfortunately, this may hinder
MARS use by those seeking to evaluate water security-related apps as
GPS/GIS features are essential to the provision of spatiotemporally-
specific risk assessments, a capability recommended in this review.
Potential evaluation considerations for this additional layer of com-
plexity have been developed to complement the existing MARS fra-
mework (Table 6). Those seeking to evaluate apps dependent on loca-
tion-specific data should consider these GIS/GPS specific criteria, such
as the importance of protecting personal data, the ability to enter GPS
data using multiple methods (i.e. current location, tagging on map, or
typing coordinates) (functionality), ability to set geographic areas of
interest for notifications (engagement), or how maps are viewed (aes-
thetics).

In addition to considering the design, development, and evaluation
of private well stewardship smartphone applications, it is important to
explore the extent to which this type of smart technology may be scaled
across socioeconomic and socio-geographic contexts. Evaluation found
that information pertaining to previous uptake of water-related appli-
cations was reported for three existing tools. Creekwatch, an American
waterway monitoring application launched in 2010, received over 2000
water monitoring reports in its first two years [11]. FreshWater Watch,
founded in 2012 and evaluated in 2016, reported over 2000 users
across 20 economically diverse regions, including Argentina, Brazil,
China, France, India, Malaysia, Mexico, Singapore, and the USA [34].
Collectively, this user cohort submitted over 15,000 water-quality da-
tasets during the first four years of application availability. TransWatL,
an SMS-based service for crowdsourcing water-level data in Kenya,
provides further evidence that water-related technologies may be
adopted in developing regions, receiving over 1000 water-level mea-
surements during its first year [50]. Notwithstanding the presented
examples, there are several challenges inherent to implementation of
these systems in developing regions of the world where the use of
smartphones remains incipient (e.g. India and Bangladesh, where
groundwater arsenic is a significant concern). The authors consider that
many of these challenges will be nationally and regionally specific, and
future studies should both explore and report these challenges in order
to streamline developed tools.

Smart-technology use is almost ubiquitous in affluent regions and
rapidly increasing at the global scale [27]; thus, smartphone-based well
stewardship tools are well positioned to gain traction among private
well owners. However, the success of any future private well steward-
ship application is dependent upon on how user-friendly the design is
and how successfully the tool is promoted. To raise awareness of future
well stewardship apps, implementers should engage stakeholders who
are strategically positioned to influence private well owners andTa
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promote uptake, especially those in positions of trust, rather than au-
thority. Nationally and regionally appropriate public health agencies
and laboratories, local authorities, government agencies, well in-
spectors, hydro(geo)logists, engineering contractors/consultants and
entities specializing in well drilling and maintenance should be seen as
potential implementation partners. Moreover, any developed tool of
this nature should be viewed as a consumer product and, as such, de-
velopment and implementation should comprise appropriate partners
including retail, marketing, and promotional experts, in order to ensure
that business/product implementation and “roll out” are successful.

5. Conclusions

This review assessed the current scope and capabilities of water

quality-related smartphone apps and web-based tools. Among the 35
eligible tools, apps for both data collection and risk communication
were identified. Notably, no existing water-related app was considered
to have the capacity to assess risk via user-defined inputs. In looking to
the future, smartphone apps employing data collection, source-specific
risk assessment, and risk communication are being developed as po-
tential mechanisms to improve private well stewardship. As the utility
of “pocket technologies” for private water source management is fur-
ther realized, future app development will inevitably follow, leading to
tools serving diverse geographic regions and water source types. If
implemented and evaluated effectively, an “ideal” app can provide an
effective and low-cost knowledge translation medium, bolstering pri-
vate well stewardship and reducing the burden of water-related illness.

To this end, several pertinent conclusions emerge from this review.
Firstly, widespread comfort with, and access to, web-based tools and
smartphone apps have created an opportunity to extend robust evi-
dence-based stewardship tools directly to individuals and households.
While water quality-related tools were classified into two broad classes,
namely data collection and risk communication, the opportunity exists
to develop a new tool category, which will employ models to combine
data collection and risk prediction. Tools of this nature may be used to
overcome limitations associated with generalized risk mitigation re-
commendations by providing users with spatiotemporally specific in-
formation. Furthermore, future private well stewardship apps will re-
quire user engagement and should incorporate user accounts, start-up
surveys, GPS location, test result entry, risk prediction algorithms, re-
sults sharing, notifications, and functionality across all interface op-
tions. Future applications should target modelling pathogen-related
health risks to well water consumers and provision of tailored mitiga-
tion strategies. To ensure effective rollout of new private well stew-
ardship apps, initiatives must include evaluations that incorporate user
uptake and feedback, as well as the accuracy and functionality of app
outputs.

These conclusions should inform the development of future private
well stewardship tools dedicated to reducing the health burden of
water-related illness. A tool of this nature aligns with the re-
commendations of both the CDC’s Clean Water for Health Program and
the recent recommendation in the SDG 6 synthesis report to embrace
data and smart technologies to improve water management.
Advancements in this domain will bring previously inaccessible data,
technology, and tools directly to private well owners, who previously
managed their private systems in virtual isolation. Ultimately, the aim
is to facilitate well stewardship by introducing a mechanism (smart-
phone app) that will address both the physical and social dimensions of
well stewardship. By integrating context-specific pathogenic risk in-
formation with a mechanism to engage private well owners, consumers
will be mobilized towards risk mitigation, thereby reducing the burden
of waterborne illness linked to private well contamination.

Table 5
Components for inclusion in “ideal” private well stewardship app, as informed by the current review.

Component Description

User account Mechanism for linking data collected over time; potential to receive water test results through app; privacy protection for individual users and their data
Start-up survey Data collection mechanism for user-inputted data (well characteristics, water treatment, water usage, and maintenance behaviour)
GPS co-ordinates Mechanism for well and aquifer identification; enable hydrogeological risk assessment based on GIS (geology, land use, etc.); link to local weather network
Test result entry Option for users to upload well water quality testing results; log test results over time; potential to link account information and results to databases
Risk model Incorporation of statistical models to estimate contamination risk using inputted data; potential for real time risk updates based on weather events
Result sharing Communication mechanism for risk estimates, result interpretation, recommendations, etc.; employ colour coded symbols and mapping where appropriate
Notifications Reminders for well maintenance, water quality testing (FIO-based), etc.; alerts for forecasted adverse water quality events (heavy rainfall, localized

contamination) with tips for microbial risk mitigation; notifications for ongoing adverse water quality events (multiple wells in aquifer indicating
contamination) with tips for protecting health

Resources directory Access to “how to” guides, service providers, regulatory information, etc.
Interface options Functionality on iOS, Android, and web browsers

Table 6
GIS/GPS considerations embedded within MARS framework.

GIS/GPS Considerations Primary Source

SECTION A: Engagement – fun, interesting, customisable, interactive (e.g. sends alerts,
messages, reminders, feedback, enables sharing), well-targeted to audience

Link GPS location to social media for information sharing [47]
Attach media (i.e. video, pictures) to geographic point [7]
Send information to users based on geographic location [33]
Set geographic areas of interest for alerts/notifications [33]
Incentivize contribution for crowdsourced geographic

information
[47]

Map searching, filtering, layering, and customization [47]

SECTION B: Functionality – app functioning, easy to learn, navigation, flow logic, and
gestural design of app

Multiple methods of entering GPS location (i.e. using
current location, tagging on map, or typing
coordinates)

[7]

Minimize/simplify GPS data entry requirements (i.e. point
geometry instead of polyline or polygon)

[2]

Intuitive controls (zoom, pan, etc.) that follow operating
system conventions

[31]

Automatically save map data when phone interruptions
occur

[31]

SECTION C: Aesthetics – graphic design, overall visual appeal, colour scheme, and stylistic
consistency

Simple map design (i.e. minimize map clutter, conservative
and consistent colours, etc.)

[31]

Use collapsible legends, control containers, etc. [16]
Responsive map design to fit different screen sizes [42]

SECTION D: Information – Contains high quality information (e.g. text, feedback, measures,
references) from a credible source. Select N/A if the app component is irrelevant

Indicate current location of user on map [31]
Mechanism to validate GPS location entered by users [47]
Indicate GPS strength/accuracy for locations set by users [7]
Data viewing options (on map or in list view) [3]
Real time map updates [33]

Additional Considerations
Privacy protection for users who volunteer information [33]
Tutorials/training/help integrated into app to assist users [3]
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