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ABSTRACT

Spatially continuous data products are essential for a number of applications including climate and hy-

drologic modeling, weather prediction, and water resource management. In this work, a distance-weighted

interpolation method used to map daily rainfall and temperature in Hawaii is described and assessed. New

high-resolution (250m) maps were developed for daily rainfall and daily maximum (Tmax) and minimum

(Tmin) near-surface air temperature for the period 1990–2014. Maps were produced using climatologically

aided interpolation, in which station anomalies were interpolated using an optimized inverse distance

weighting approach and then combinedwith long-termmeans to produce daily gridded estimates. Leave-one-

out cross validation was performed to assess the quality of the final daily grids. The median absolute pre-

diction error for rainfall was 0.1mm with an average overprediction (10.6mm) on days when total rainfall

was less than 1mm. On days with total rainfall greater than 1mm, median absolute prediction errors were

2mm and rainfall was typically underpredicted above the 10-mm threshold. For daily temperature, median

absolute prediction errors were 3.18 and 2.88C for Tmax and Tmin, respectively. On average, this method

overpredictedTmax (11.18C) and Tmin (11.58C), and errors varied considerably among stations. Errors for all

variables exhibited significant seasonal variations. However, the annual range of errors was small. The

methods presented here provide an effective approach for mapping daily weather fields in a topographically

diverse region and improve on previous products in their spatial resolution, time period of coverage, and

use of data.

1. Introduction

Gridded climate data are useful for a number of ap-

plications such as decision-making in environmental

management, climate and hydrologic modeling, risk

assessment, and water resource planning where knowl-

edge of the spatial distributions are important. However,

gridded data are often not readily available and can be

difficult to develop, especially for mountainous regions

(Li and Heap 2008) and at fine spatial (e.g., 250m) and

temporal (e.g., hourly/daily) resolutions.Gridded datasets

are often derived from point measurements which are

typically sparse in mountainous regions where access is

limited. Even in areas where observation networks are

dense, complex topographic and climatic features can

make the development of realistic gridded fields hard

to achieve.

In Hawaii, much effort has been expended to improve

the quality of existing climate data (Giambelluca et al.

2013; Longman et al. 2018, hereafter L18) and a number

of gridded climate products at various temporal resolu-

tions are available that leverage this work. Giambelluca

et al. (2013) developed climatological rainfall maps at a

250-m spatial resolution for seven of the main islands in

Hawaii (http://rainfall.geography.hawaii.edu/). This prod-

uct makes use of average spatial patterns derived for a

30-yr period using a Bayesian data fusion method to

combine rain gauge data with radar rainfall estimates,

mesoscale meteorological model (MM5) output, and
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Slopes Model (PRISM) maps (Daly et al. 1994). Daly

et al. (2006) developed 30-yr mean (1971–2000) pre-

cipitation and temperature fields (12 meanmonthlymaps

and 1 annual map for each variable), and Frazier et al.

(2016) developed month–year rainfall maps for the pe-

riod 1920–2012. Gridded climatologies of other climate

variables, such as temperature, relative humidity, and

over 40 othermeteorological variables (Giambelluca et al.

2014, hereafter G14), were developed on the same 250-m

grid used by Giambelluca et al. (2013). Limited effort has

been undertaken to develop daily gridded fields, which

are key to impact modeling work. Recently, Daymet

(version 3) was extended to cover Hawaii at a 1-km

spatial resolution from 1980 to 2008 using only data

available through public electronic data repositories (see

Thornton et al. 2012). Here we continue to leverage an

extensive observational network (see L18) compiled for

Hawaii to develop daily gridded estimates of rainfall and

temperature at 250-m resolution for the period 1990–2014.

The availability of gridded daily rainfall and temper-

ature maps at a fine spatial resolution fulfills a critical

need in the research community in Hawaii. With spec-

tacular topographically induced gradients and as the

most isolated island group on Earth, the Hawaiian

Islands are critically reliant on knowledge of the pat-

terns of climate for managing and protecting natural

resources such as freshwater and the islands’ unique

ecosystems. Management decisions benefit greatly from

high-resolution datasets, necessary to adequately cap-

ture the extreme spatial variability of climate. Hawaii’s

ecosystems are characterized by high endemism and a

high percentage of threatened and endangered species

vulnerable to climate change and invasion by nonnative

species. Stakeholders, including resource managers and

decision-makers, are constrained by the data available

to them, making higher temporal and spatial resolution

data a critical need.

This current endeavor builds on a long history of

mapping rainfall in Hawaii and improves on previous

products in its spatial resolution, time period of cover-

age, and the inclusion of new observation stations. In

addition, this work provides a foundation on whichmore

sophisticated methods for mapping climate variables at

similar spatial and temporal resolutions can be devel-

oped. Note that precipitation in Hawaii consists of rain-

fall, different types of frozen precipitation (e.g., snow,

sleet, hail, and freezing rain), and fog drip (Giambelluca

et al. 2013). Following L18, the term rainfall is used

throughout the paper to describe all forms of precipi-

tation measured in rain gauges in Hawaii.

A variety of different methods for the spatial interpo-

lation of environmental point data exist, and the choice

of method depends on a number of factors (Li and Heap

2008). Examples include linear regression (e.g., Di Piazza

et al. 2011; Clark and Slater 2006; Camera et al. 2014;

Newman et al. 2015), geographically weighted regression

(Di Piazza et al. 2011), splines (e.g., Hofstra et al. 2008),

Thiessen polygons (e.g., Wagner et al. 2012), inverse

distance weighting (IDW; e.g., Camera et al. 2014), an-

gular distanceweighting (e.g.,Hofstra et al. 2008), nearest

neighbor (e.g., Shen et al. 2001), artificial neural networks

(e.g., Di Piazza et al. 2011), or various types of kriging (e.g.,

Brinckmann et al. 2016; Di Piazza et al. 2011; Frazier

et al. 2016).

Themost appropriate interpolation method for gridded

point estimates varies as a function of the area, the spatial

and temporal scales desired (Vicente-Serrano et al. 2003),

and the availability of data. For example, kriging has been

commonly used for spatial interpolation of both rainfall

and temperature at various spatial scales and temporal

resolutions (e.g., Hattermann et al. 2005; Buytaert et al.

2006; Berezowski et al. 2016; Brinckmann et al. 2016;

Frazier et al. 2016), but requires a significant amount of

point data to achieve accurate results. To quantify the

distance dependency of spatial autocorrelation in the form

of an empirical semivariogram, as required in kriging,

at least 100 measurement pairs (ideally 150) are needed

(Webster and Oliver 2001). In data scarce regions,

simple interpolation approaches such as IDW are com-

monly employed (e.g., Teegavarapu and Chandramouli

2005; Croke et al. 2011; Di Piazza et al. 2011). In general,

the most accurate interpolation results are found in re-

gions with high observation density and low topographic

complexity (Brinckmann et al. 2016).

In mountainous regions, spatial rainfall patterns are

influenced by the irregular topography, thus making the

interpolation of daily rainfall intrinsically difficult

(Jeffrey et al. 2001). In addition, due to the stochas-

tic nature of daily rainfall, large variability in elevation,

slope, and aspect terms on the landscape of Hawaii in-

creases spatial variability due to orographic processes,

rain shadoweffects, and strongwinds (Buytaert et al. 2006).

In complex topography, kriging or other geostatistical

methods used to interpolate rainfall can produce unre-

liable results due to extreme spatial variability (Shen

et al. 2001) especially at a daily time step or when data

are sparse. In Hawaii, ordinary kriging was shown to be

effective over complex topography for mapping rainfall

at a monthly time scale (Mair and Fares 2011; Frazier

et al. 2016). Due to the complex topography found in

Hawaii and the limited number of observations avail-

able at the daily time step, we have chosen to adopt the

simple IDW approach for the interpolation of both

rainfall and temperature in this analysis.

In combination with the IDW approach, we use a

climatologically aided interpolation (CAI;Willmott and
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Robeson 1995) method, which combines long-term cli-

mate information with daily station data to develop the

daily gridded estimates. This allows for information

propagation from the climatological patterns, based on

a denser climatological station network, through to the

daily fields. With CAI, departures from the mean

(anomalies) on a given month (or day) are interpolated

and then combined with ameanmap to produce the final

monthly (or daily)map (e.g., Dawdy and Langbein 1960;

Willmott and Robeson 1995; Frazier et al. 2016). In

Hawaii, the climatological network is much denser than

the daily observation network and more completely re-

solves the steep rainfall gradients associated with oro-

graphic processes (e.g., Giambelluca et al. 2013; Frazier

et al. 2016; L18).

The CAI approach has been shown to produce better

results than interpolating absolute rainfall values at a

regional scale (New et al. 2000; Chen et al. 2002) and has

been used in a number of studies for the interpolation of

rainfall and temperature (Dawdy and Langbein 1960;

Willmott andRobeson 1995; Haylock et al. 2008; Frazier

et al. 2016). The CAI approach has been shown to be

especially effective at improving the prediction accuracy

for both rainfall and temperature interpolation in re-

gions of variable terrain with limited observations (e.g.,

Hunter andMeentemeyer 2005). Themain advantage of

the CAI approach is that climatology maps have more

spatial information built into them because they are de-

rived from a denser network of weather stations.

The objective of this study is to produce daily rainfall,

and maximum (Tmax) and minimum (Tmin) near-surface

air temperaturemaps at a high spatial resolution (250m)

for the state of Hawaii for a 25-yr period (1990–2014),

and to quantify the spatially-dependent uncertainty in

the interpolated fields.

2. Study area and data

The study area encompasses seven main Hawaiian

Islands including, Hawaii Island, Maui, Kahoolawe,

Lanai, Molokai, Oahu, and Kauai. Hawaii has some of

the most diverse rainfall patterns on Earth due to the

combination of persistent winds, a large elevation range

(0–4205m), complex mountainous topography, and an

atmospheric inversion. Combined with elevation de-

pendent changes in temperature, these diverse features

produce nearly all commonly encountered climate zones

across the complete island chain. Themajority of rainfall

is produced as a result of moist marine air being oro-

graphically lifted up along windward mountain slopes

by persistent east-northeast trade winds (Leopold 1949;

Sanderson 1993; Garza et al. 2012; Giambelluca et al.

2013). At high elevations, the vertical development of

clouds is capped by an atmospheric trade wind inversion

(TWI), which has an annual mean base height of;2150m

and results in dry atmospheric conditions above (Longman

et al. 2015). Trade wind orographic rainfall is the most

prevalent synoptic weather pattern in Hawaii, however,

significant contributions to the total precipitation and ex-

treme rainfall events in Hawaii have been linked synoptic

disturbances such as cold fronts, kona storms (lowpressure

systems that develop to the surface and are cut off from

midlatitudewesterly flow), upper-tropospheric disturbances,

and tropical systems (Kodama and Barnes 1997).

The spatial pattern of surface air temperature across

the Hawaiian Islands is largely dependent on elevation

through adiabatic cooling and warming of rising and

sinking air, respectively, and exchanges of latent heat

associated with the evaporation and formation of cloud

droplets (Giambelluca et al. 2014). Within the TWI

layer, however, temperature increases with elevation.

Because of day-to-day vertical shifts in the TWI height

and thickness, the inversion cannot be seen in the profile

when averaged over multiple days. However, the mean

surface lapse rates differ for zones below and above

the mean TWI base height (Giambelluca et al. 2014).

Windward–leeward differences in surface lapse rates

(Minder et al. 2010) driven by differences in local sur-

face energy balance and atmospheric conditions are also

important.

In this study, we follow regression methods presented

in G14 to create a new set of meanmonthly temperature

maps based on an updated temperature dataset (see

L18). We chose to develop new maps rather than use

the existing G14 temperature maps because the avail-

ability of the L18 dataset, which 1) draws from more

stations, including 13 additional high-elevation stations, 2)

covers a more recent and uniform base period (1990–

2014) than was used previously, and 3) was subjected to

more rigorous quality control. Furthermore, to model

windward–leeward effects, G14 used mean annual rain-

fall grids (Giambelluca et al. 1986) that have since been

updated (Giambelluca et al. 2013).

The climate data used in this study cover the period

1990–2014. Data were quality controlled and gap-filled

as part of a previous study (see L18). In total, daily

rainfall data from 471 stations and Tmax and Tmin data

from 142 stations were utilized (Fig. 1). The number of

historical rain gauge stations available at the daily time

step is considerably smaller than the number available

to map monthly rainfall (over 1100 stations were used to

produce the month–year maps; Frazier et al. 2016). This

difference between monthly and daily station counts is

caused by several factors. First, many of the historical

stations in the monthly dataset were manually read ac-

cumulating gauges, and rainfall records were often not
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read on a regular daily interval (some were read only on

weekdays, others were recorded weekly or evenmonthly,

with totals representing the accumulation of rainfall since

the last reading). Second, somemonthly values may have

been aggregated from daily data that had an incomplete

time series for the month in question. Finally, Hawaii has

experienced a sharp decrease in the number of opera-

tional gauges since the 1980s with the decline of planta-

tion agriculture (Giambelluca et al. 2013).Monthly datasets

utilized by Frazier et al. (2016) used station data beginning

in 1920 and many of the historical (discontinued) stations

were gap-filled across the period of record. Mean monthly

rainfall maps were obtained from the Rainfall Atlas of

Hawai‘i (http://rainfall.geography.hawaii.edu/).

3. Methods

a. Anomaly calculations

1) RAINFALL

Rainfall relative anomalies were calculated as the

ratio of a daily station observation to the mean daily

value at that same location:

RFAnom
x
5

RFO
x

RFMean
x

, (1)

where RFAnomx is the rainfall anomaly at station x for a

given day (e.g., 1 January 1990 anomaly), RFOx is the

observed daily rainfall at station x for a given day (e.g.,

1 January 1990 rainfall value), andRFMeanx is themean

daily rainfall at station x for the givenmonth (e.g., January

daily mean value). For rainfall, relative anomalies are

preferred over absolute anomalies because the ratio

better preserves the relationship between the mean and

the variance (New et al. 2000). To obtain mean daily

rainfall values for each month, first, the mean monthly

rainfall value corresponding to a unique station was

extracted from the mean monthly map (Giambelluca

et al. 2013). Next, this extracted value was divided by the

number of days in a respective month to produce mean

daily value. We elected to calculate each anomaly rela-

tive to the mapped mean rather than the station mean

because not all of the stations had the 30 years of data

necessary to derive a climatological mean.

2) TEMPERATURE

To facilitate calculation of temperature anomalies, it

was necessary to create a set of mean monthly Tmax and

Tmin maps so the CAI approach could be applied ef-

fectively. Due to the sharp discontinuity in temperature

created by the TWI, a segmented linear regression tech-

nique was used to relate mean monthly station tem-

perature data with elevation and mean annual rainfall

(Giambelluca et al. 2014). First, daily station data were

aggregated to monthly values, and then to mean monthly

values at each station over the 1990–2014 study period.

Next, to generate the maps, mean monthly station tem-

perature data were related to elevation and mean annual

rainfall using a segmented linear regression technique

(Giambelluca et al. 2014). The segmented regression

approach allowed for different temperature–elevation

relationships in two elevation ranges to accommo-

date the discontinuity in the mean environmental

FIG. 1. Locations of all of the climate stations used in the IDW interpolation.
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temperature lapse rate due to the TWI; the lower- and

upper-level regressions were separated at the approxi-

mate mean TWI level (Longman et al. 2015). A mean

annual rainfall term was included to capture windward–

leeward effects on cloud cover (solar radiation) and

moisture availability (Minder et al. 2010; Giambelluca

et al. 2014). Regression equations for low and high ele-

vations [Eqs. (2) and (3), respectively] are as follows:

T(z, RFann)5
a
1
(z

3
2 z)1 a

2
(z2 z

1
)

z
3
2 z

1

1 a
4
RFann, (2)

T(z, RFann)5
a
2
(z

2
2 z)1 a

3
(z2 z

3
)

z
2
2 z

3

1 a
4
RFann, (3)

where T refers to near-surface air temperature (Tmax or

Tmin, 8C), z is elevation above mean sea level (m), RFann

is the long-term mean annual rainfall (mm) extracted

from the Rainfall Atlas of Hawai‘i (Giambelluca et al.

2013), and elevation coefficients were set at z15 0m, z25
4200m, and z3 5 2150m. The regressions were fitted

using mean monthly station data from 142 stations

ranging from 0 to 3400m in elevation to obtain the co-

efficients (a1, a2, a3, a4).With a gridded (250m) digital

elevation model and mean annual rainfall dataset

(Giambelluca et al. 2013), these regression equations

were used to createmaps ofmeanTmax andTmin for each

calendar month. We used mean station data to test the

calibration skill of the meanmonthly temperature maps.

Daily maximum and minimum temperature anoma-

lies were calculated as the departure of a daily station

observation from the newly created mean monthly

maximum and minimum temperature map value at the

station location:

TaAnom
x
5TaObs

x
2TaMean

x
, (4)

where TaAnom is either the maximum or minimum

temperature anomaly at station x, TaObs is the observed

daily maximum or minimum temperature at station x,

and TaMean is the mean monthly maximum (or mini-

mum) temperature at station x.

As a final screening step, maximum and minimum

bounds were calculated for the observed portion of both

anomaly datasets, and any anomalies in the gap-filled

portion of the dataset exceeding these bounds were re-

moved in order to avoid outliers generated from the gap-

filling process (see L18).

b. Interpolation method

One of the oldest spatial prediction techniques is IDW

interpolation (Shepard 1964). The IDWmethod estimates

the value of a variable at each location using a linear

combination of surrounding observations weighted by an

inverse function of the distance between the observations

and the interpolated location (Li and Heap 2008):

P(x
0
)5 �

n

i51

P(x
i
)w

i
, (5)

where P(x0) is the predicted value, P(xi) are the obser-

vations considered in the interpolation, n is the number

of stations used in the interpolation, and wi are the

weights, which are defined as

w
i
5

1/dl
i

�
n

i51

1/dl
i

, (6)

where l is the weighting parameter and di is the distance

between x0 and xi. The assumption of IDW is that ob-

servations close to each other on the ground will be

more similar than those that are farther apart, therefore

observations close to x0 will be given greater weight in

the interpolation. The selection of the weighting pa-

rameter, the number of sampled points used, and the

neighborhood of influence are arbitrary (Webster and

Oliver 2001).

To determine the best parameterization for the IDW

equation in this study, we tested several combinations of

these parameters using a subset of the data fromHawaii

Island, for the rainfall variable. The best results were

obtained when 1) sampled points were weighted with a

1.5 inverse distance (l 5 1.5) which provided better

estimates in this study than the frequently used standard

exponent of two (e.g., Shepard 1964), 2) no spatial re-

strictions were given for the neighborhood (i.e., the

anomaly data could be drawn from anywhere on a given

island), and 3) only the nearest five stations were used

for the interpolation. The same parameterization scheme

was applied to the temperature interpolation as well.

Rainfall and temperature anomalies were interpo-

lated individually for Hawaii Island, Oahu, and Kauai.

Following the methods of Frazier et al. (2016), anomaly

data from the closely located islands of Molokai, Lanai,

Maui, and Kahoolawe were treated as a single dataset

for interpolation. The phrase Maui Nui (Greater Maui)

is used to reference combined metadata and results

derived from climate stations on these islands. By

treating the islands of Maui Nui as a group, we are able

to address the issues of data gaps on any one individual

island. This is particularly important for the islands of

Molokai, Lanai, and Kahoolawe, which have far less

available data at the daily time step than the island of

Maui. The minimum, maximum, and mean number of

rainfall and temperature stations used in the interpolation

on each island is presented in Table 1.
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c. Final rainfall and temperature maps

Our CAI approach consists of the following steps.

First, rainfall anomalies were calculated as the ratio of

station rainfall on given day to mean daily rainfall at the

same location [Eq. (1)]. Next, rainfall anomalies were

interpolated across a gridded field using an optimized

IDW interpolation method [Eq. (5)] to create rainfall

anomaly maps. Finally, values from the interpolated

gridded rainfall anomalymaps weremultiplied by values

from the gridded mean daily rainfall maps to produce

gridded daily rainfall values [Eq. (7)]:

RFDaily
z
5RFAnom

z
3RFMean

m
, (7)

where RFDaily is the gridded daily rainfall on a given

day z, RFAnom is the interpolated rainfall anomaly on a

given day z, and RFMean is the mean daily rainfall for

the respective calendar month m that day z falls within.

For both Tmax and Tmin, the CAI consists of the fol-

lowing steps. First, temperature anomalies were calcu-

lated as the departure of station data on given day from a

mean (Tmax orTmin)map value at same location [Eq. (4)].

Next, temperature anomalies were interpolated across

a gridded field using an optimized IDW interpolation

method [Eq. (5)] to create Tmax and Tmin anomaly maps.

Finally, the interpolated gridded Tmax and Tmin anomaly

map valueswere added to griddedmean dailyTmax andTmin

maps [Eq. (8)] to derive a griddeddailyTmax andTmin values:

TaDaily
z
5TaAnom

z
1TaMean

m
, (8)

where TaDaily is the gridded daily temperature (Tmax or

Tmin) on a given day z, TaAnom is the interpolated

temperature (Tmax or Tmin) anomaly on a given day z,

and TaMean is the mean daily temperature (Tmax or Tmin)

for the respective calendarmonthmwithinwhich day z falls.

Once all of the gridded surfaces were created, a final check

was done to ensure that Tmax was always greater than Tmin.

To avoid instances where, Tmax , Tmin, an alternative ap-

proach would be to interpolate Tmean and diurnal range so

that this check is no longer required. This alternative

approach has been used in other work (e.g., Newman et al.

2015, 2019a), however, direct comparisons between the

methods have not been performed in any of these studies.

d. Cross validation

Daily rainfall and temperaturemapswere tested using a

leave-one-out cross-validation (LOOCV): sequentially

leaving out one measured data point and reproducing it

based on the information from the remaining station ob-

servations. LOOCV yields uncertainty estimates for the

gridded data near each target station. LOOCV is com-

monly used for assessing interpolation methods (e.g.,

Wagner et al. 2012; Brinckmann et al. 2016), but has

TABLE 1. Minimum, maximum, and mean number of rainfall and temperature stations used in interpolation for each island and for each

variable, the land area (km2) of each island (Juvik and Juvik 1998) andminimum,maximum, andmean station densities (stations per km2).

Min No. of stations Max No. of stations Mean No. of stations Area (km2) Min density Max density Mean density

RF

Hawaii Island 37 122 82 10 433.1 0.004 0.012 0.008

Maui Nui 28 137 109 3036.7 0.009 0.045 0.036

Oahu 31 108 85 1546.5 0.020 0.070 0.055

Kauai 5 54 37 1430.5 0.003 0.038 0.026

Tmax

Hawaii Island 9 48 28 10 433.1 0.001 0.005 0.003

Maui Nui 7 44 33 3036.7 0.002 0.014 0.011

Oahu 5 29 19 4546.5 0.003 0.019 0.012

Kauai 1 13 7 1430.5 0.001 0.009 0.005

Tmin

Hawaii Island 10 50 33 10 433.1 0.001 0.005 0.003

Maui Nui 11 41 32 3036.7 0.004 0.014 0.011

Oahu 8 29 22 1546.5 0.005 0.019 0.014

Kauai 2 13 8 1430.5 0.001 0.009 0.006

TABLE 2. Mean calibration errors (8C) for mean monthly

temperature mapping.

MBE MAE RMSE

All elevations

Tmax (8C) 0.8 1.5 1.7

Tmin (8C) 0.0 1.4 1.5

Low elevation

Tmax (8C) 0.8 1.5 1.6

Tmin (8C) 0.1 1.6 1.6

High elevation

Tmax (8C) 0.6 1.6 1.8

Tmin (8C) 20.1 0.9 1.1
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several shortcomings that should be considered. LOOCV

commonly overestimates errors at a particular location due

to the fact that predictions are derived at a point where

data actually exist. In addition, the interpolated surface

may be altered by the removal of a point that is being cross

validated (Jeffrey et al. 2001). This has the greatest impact

in the areas with lowest station density.

Several skill scores are used to quantify the average

interpolation skill. For rainfall we evaluate interpolation

skill for different ranges of daily rainfall amounts; errors

FIG. 2. Mean calibration errors for (top) mean monthly maximum temperature and (bottom)

mean monthly minimum temperature at 142 locations: MBE, MAE, and RMSE.

FIG. 3. Differences between G14 and L18 mean monthly (a),(b) Tmax and (c),(d) Tmin for temperature maps for

(left) January and (right) July. Differences are calculated as G14 2 L18, and the mean difference is given as the

island-wide average difference between the two products.
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are calculated for periods below and above a 1-mm

threshold. Prediction errors are expressed using the me-

dian (MED) of absolute differences between predicted

(mapped) and observed data, and the median absolute

deviation (MAD), defined as the median of the absolute

deviations from the median of all data (Tukey 1977).

MAD can be used as an alternative to the standard de-

viation in a non-normal distribution when the median is

used as a measure of central tendency (Reimann et al.

2005). For the rainfall analysis, following the methods of

FIG. 4. Daily rainfall on 1 Jan from 1990 to 2014 for Hawaii Island.

FIG. 5. (a) Daily maximum temperature and (b) daily minimum temperature for 1 Jan and 1 Jul during six unique

years (1994, 1996, 2000, 2004, 2008, and 2012) for Hawaii Island.
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Camera et al. (2014) relative errors were calculated at each

station for days when nonzero rainfall was observed (51%

of the dataset). Relative errors are calculated by dividing

the MED and MAD statistics by the mean rainfall at a

given station and then taking the average of these errors at

all stations. Other error metrics used in the analysis to

assess uncertainty are mean absolute error (MAE), mean

bias error (MBE), and root-mean-square error (RMSE).

FIG. 6. Daily rainfall (RF), maximum temperature Tmax, and minimum temperature Tmin for 1

Jan for (a) 1990, (b) 1993, (c) 1995, and (d) 2014 for Hawaii Island.

FIG. 7. All station observations comparedwith all cross-validation results for (a) rainfall, (b)Tmax, and (c)Tmin; heatmaps show the density

of points in relation to a 1:1 fit.
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A contingency table was created to assess the accu-

racy of rainfall event prediction. Here, the term ‘‘event’’

refers to predicted or observed rainfall at or above

thresholds set at 0.1-mm increments for rainfall# 1mm

and at 1-mm increments for rainfall . 1mm. Every

cross-validation point was assigned to one of four dis-

crete categories: hit a, where the predicted event occurs

and observed rainfall is greater than or equal to the

threshold; false alarm b, where the predicted event does

not occur and observed rainfall is less than the threshold;

miss c, where the event occurs when not predicted and

rainfall is greater than or equal to the threshold when

rainfall less than the threshold is predicted; and correct

negative d, where the event is not predicted and does not

occur and rainfall less than threshold is observed when

rainfall less than threshold predicted. Several measures

of interpolation accuracy can be derived from combi-

nations of the categorical data. We calculated the

probability of detection [POD 5 a/(a 1 c)], the false

alarm ratio [FAR5 b/(a1 b)], the critical success index

[CSI 5 a/(a 1 b 1 c)], and bias [B 5 (a 1 b)/(a 1 c)]

(Wilks 2006). POD is bounded by 0 (worst case) and

1 (best case), FAR is bounded by 0 (best case) and 1 (worst

case), and CSI is used to determine whether the state of

precipitation has been accurately predicted and attains a

value of 1 for a perfect interpolation and a value of 0 for a

random interpolation. If B . 1 (overforecast), the event

was forecast more than it was observed (Wilks 2006).

The climatological mean probability of precipitation

(PoP) is evaluated using the entire time series of daily

station observations and the cross validation estimates

at the nearest corresponding grid points. The PoP at each

station is calculated as the number of rainy days (days

with greater than 0.15mm of rainfall) divided by the total

number of days for both the observed and predicted da-

tasets. The difference between observed and predicted

PoP is used as a measure of prediction bias.

To determine the effect of seasonality on interpolation

errors, a one-way analysis of variance (ANOVA) is used

for each variable to determine if the degree of error differs

between months. Spearman’s coefficient of rank correla-

tion rs is used to investigate the relationship between the

magnitude of error and station count. Both the ANOVA

and Spearman statistics were calculated using the average

monthly MAE and station count for each island.

4. Results

a. Mean temperature mapping

A calibration and consistency check of the mean

monthly temperature was executed by comparing long-

term monthly means of station data over the period of

record with predicted map values. Mean errors were

identified for all of the 142 stations used in the mapping

effort. In addition, spatial (by elevation) and temporal

(by season) errors were also assessed. In general, mean

monthly interpolation based on the segmented linear

regression technique produced reasonable results with

MAE of 61.58C and 61.48C for Tmax and Tmin, respec-

tively (Table 2).Maximum temperaturewas overpredicted

(10.88C) while predictions of Tmin did not show bias in

either direction. For Tmax, a seasonal pattern was evident

with higher RMSE between June and September relative

to the rest of the year (Fig. 2). In general, errors were

similar between the high ($2100m) and low (,2100m)

TABLE 3. Descriptive statistics for LOOCV rainfall errors. RF

ALL is all rainfall, RF, 1 is all rainfall less than 1mm,RF. 1 is all

rainfall greater than 1mm, MED is the median error, MAD is the

median deviation, sd is the standard deviation of errors, r is

the correlation coefficient, n is the high number of point estimates

used in the analysis, n2 is the number of point estimates where

rainfall is .0mm, and Hawaii is Hawaii Island.

Hawaii Maui Nui Oahu Kauai

RF ALL

MED mm 0.5 0.0 0.6 0.5

MAD mm 0.5 0.0 0.5 0.5

MAE mm 2.6 1.5 2.3 2.6

sd mm 7.0 6.3 6.2 7.7

MBE mm 0.0 0.0 0.0 20.1

RMSE mm 7.5 6.5 6.6 8.1

r 0.84 0.85 0.83 0.83

n 754 636 992 502 773 313 341 700

MED % 51.5 45.4 55.3 49.5

MAD % 33.5 33.8 34 31.1

n2 423 639 359 926 466 604 215 798

RF , 1

MED mm 0.1 0.0 0.2 0.1

MAD mm 0.1 0.0 0.2 0.1

MAE mm 0.8 0.4 0.8 0.7

sd mm 3.3 2.3 2.5 2.6

MBE mm 0.8 0.3 0.7 0.6

RMSE mm 3.4 2.3 2.7 2.7

r 0.11 0.11 0.11 0.13

n 444 451 742 601 458 857 194 829

MED % 96.7 84.5 91.1 82.4

MAD % 66.8 46.5 58.2 55.1

n2 113 454 110 025 152 148 68 927

RF . 1

MED mm 2.3 1.8 2.0 1.8

MAD mm 1.7 1.4 1.4 1.4

MAE mm 5.2 4.8 4.6 5.1

sd mm 9.6 11.2 8.7 10.8

MBE mm 21.1 21.1 20.9 20.9

RMSE mm 10.9 12.2 9.8 12

r 0.83 0.83 0.82 0.82

n 312 481 251 623 316 972 147 761

MED % 41.7 38.2 44.8 40.7

MAD % 26.6 26.5 26.7 24.7

n2 312 481 251 623 316 972 147 761

498 JOURNAL OF HYDROMETEOROLOGY VOLUME 20

Unauthenticated | Downloaded 01/11/21 05:19 PM UTC



elevation stations for Tmax. For Tmin errors were slightly

lower at high elevation.

We compare the mean monthly Tmax and Tmin cli-

matology maps (L_Maps) with the maps produced by

G14 (Fig. 3). On average, G14_Maps forTmax, had lower

values than the L_Maps (23.68 6 0.38C) and the largest

differences were found at high elevations on Maui and

Hawaii Island. For Tmin, G14_Maps consistently gave

higher values than the L_Maps, although the differences

were much smaller (11.48 6 0.48C) than for Tmax. The

pronounced differences in Tmax between the two grid-

ded products at high elevations might be explained by

larger number of high-elevation stations used to derive

the high-elevation regression equation. In general, we

are more confident in the L_Maps because they make

use of more input data to derive regression equations

and specifically more data from representative high-

elevation stations.

b. Mapping daily rainfall and temperature

To illustrate the results of the rainfall interpolation,

Fig. 4 shows maps of rainfall for 1 January of each year

in the 25-yr period of record on Hawaii Island. The

windward–leeward pattern is captured in the maps with

the highest rainfall values typically occurring on the

north- and east-facing shores and the lowest rainfall

occurring on the south- and west-facing shores. Ex-

treme interannual variability is captured within this

time series as well, with almost no rainfall observed in

1995 and 2003 maps and island-wide rainfall ob-

served in the 1993 and 2005 maps. In addition, sev-

eral localized rainfall events were captured in the

various maps.

For temperature, we show representative days for the

wet season (1 January) and the dry season (1 July) var-

iations for both Tmax and Tmin for six sample years

(Fig. 5). Seasonal and interannual variations are apparent

for both Tmax and Tmin. To highlight how rainfall influ-

ences Tmax and Tmin at the daily time step we selected

four days (1 January, different years) representing a

range of rainfall patterns onHawaii Island and examined

the Tmax and Tmin patterns on those same days (Fig. 6).

Differences are subtle, but the wettest day (Fig. 6b) had

the lowest Tmin and the driest day (Fig. 6c) had the

highest Tmax among the days used in the comparison,

which is the pattern that would be expected.

We compare all of the cross-validation data results with

observations for rainfall and temperature to determine

the overall linear fit (Fig. 7). The majority of pairs are

close to the 1–1 line for all three plots, however, some

scatter exists. Of the three variables, rainfall predictions

were most highly correlated with observations, followed

by Tmin and then Tmax.

c. Island interpolation errors

A summary of rainfall interpolation error metrics is

given in Table 3. Relative MED errors (averaged from

all stations) ranged from 45% to 55% (MED5 0–0.6mm)

FIG. 8. Contingency statistics for rainfall events depicted as a function of the rainfall threshold level: (top left) POD,

(top right) FAR, (bottom left) CSI, and (bottom right) B.
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FIG. 9. PoP analysis for (a) rainfall observations at each station location, (b) rainfall predictions at grid cells

corresponding to stations, and (c) the bias (predicted PoP 2 observed PoP) at each location.
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across the four islands.A strong and consistent relationship

was found between the predicted and observed values

with r ranging from 0.83 to 0.85 across the four islands.

For rainfall , 1mm (64% of the data), a tendency to

overpredict the observed rainfall (MBE 5 10.6mm)

was identified. Correlation between the predicted and

observed data in this category was not strong on any of

the islands (r5 0.11–0.13), which suggests that day-to-day

variability within this low rainfall range is not well

representedby the interpolation scheme.Whenonlynonzero

values were examined (24% of the rainfall data , 1mm)

the relative MED error ranged from 82% to 97% across

the four islands. This large error was not surprising

considered the fact that even a small overprediction of

low rainfall can translate into large relative errors.

For rainfall $ 1mm (36% of the data), the relative

error was lower (38%–45%) than for rainfall , 1mm

and a mean tendency for an underprediction of rainfall

(MBE 5 21.1mm) was identified. Negative bias is not

introduced until rainfall exceeds the ;10mm as can be

seen in Fig. 8. The median absolute error across the

islands was only 2mm. In general, the correlation was

much stronger between the predicted and observed

values (r 5 0.82–0.83) for this subset of the data.

The contingency table metrics, POD, FAR, CSI, andB,

derived from rainfall estimates, are shown in Fig. 6. POD

andCSIwere highest for the lowest rainfall thresholds and

decreased as the rainfall thresholds increased. For all of

the islands, a positive bias was identified when rainfall was

below the ;10mm threshold and negative bias was

identified when rainfall exceeded this threshold. At the

highest thresholds (,250mm), consistent overpredictions

were found on Maui Nui. This is most likely the result of

observation stations located in the wettest areas on the

east side of the island of Maui interpolating additional,

false rainfall to areas that are in reality much drier.

Results from the PoP analysis indicate that rainfall

prediction varies considerably by station (Fig. 9). PoP is

highest along windward slopes at elevations just below the

mean TWI. In these areas, rainfall occurs between 70%

and 94% of the time (PoP). At lower elevations and on

leeward exposures the PoP can be less than 10%. In gen-

eral, the predicted results agree with observed pat-

terns, however, the mean bias error was 111.5% (range:

from216 to155%). Some of the highest bias was found at

high-elevation stations on Hawaii Island and Maui Nui at

elevations near or above the mean TWI. This is not sur-

prising considering on any given day the TWI could be

above or below these points, thus producing extremely dry

or wet conditions that were not well predicted by the

conditions at neighboring stations used in the interpolation.

The descriptive statistics for the LOOCV of Tmax

andTmin are presented in Table 4. On average, predicted

values were greater than observations for both Tmax

(MBE511.08C) and Tmin (MBE511.58C) across the
island chain. MED absolute errors ranged from 62.58
to 63.58C for Tmax and from 62.48 to 63.48C for Tmin

across all islands. Correlations r between predicted and

observed data were weak on all islands (r5 0.10–0.17) ex-

cept forMaui Nui (r5 0.56), which is most likely explained

by the fact that Maui Nui consists of four individual islands.

d. Station interpolation error

Global statistics are useful for characterizing island-

wide errors but do not provide information on how the

interpolation performance varied across the gridded

surface. In Fig. 10, we show both the MED and the

relative MED error at each of the 471 stations used in

the rainfall interpolation. In general, the driest (leeward

high elevation) and the most remote stations have the

lowest MED errors and the highest relative MED er-

rors. The wettest (windward low elevation) stations had

the highest MED errors and the lowest relative MED

errors. Stations located in areas with high station density

typically have lower errors than stations in remote areas.

No relationship between elevation and error was iden-

tified. Therefore, when interpreting the error at an in-

dividual station it is important to consider not only the

map error at an individual station but the rainfall char-

acteristics at that station as well. When relative errors

are calculated by day (not by station) we find the same

relationship between wet/dry days as we do wet/dry

stations. The driest days have the highest relative errors

and wettest days have the lowest relative errors. Es-

sentially, the spatial variation in rainfall on any given

TABLE 4. Descriptive statistics for LOOCV maximum and

minimum air temperature.

Hawaii Maui Nui Oahu Kauai

Tmax (8C)
MED 3.2 3.3 2.5 3.5

MAD 2.1 2.1 1.5 2

MAE 4.2 4.3 2.9 4

sd 3.5 3.7 2.2 2.9

MBE 0.6 1.4 0.6 1.6

RMSE 5.4 5.6 3.7 5

r 0.17 0.56 0.10 0.14

n 231 964 300 701 201 573 36 695

Tmin (8C)
MED 3.4 2.4 2.4 3.2

MAD 2.4 1.5 1.5 1.9

MAE 4.7 3.2 3 3.8

sd 3.9 3.1 2.4 2.9

MBE 1.7 1.2 0.5 2.6

RMSE 6.1 4.5 3.8 4.8

r 0.32 0.77 0.07 0.28

n 272 114 289 775 170 257 49 050

MARCH 2019 LONGMAN ET AL . 501

Unauthenticated | Downloaded 01/11/21 05:19 PM UTC



day will influence the error at a particular station. Rainfall

events that are more localized, will produce higher over-

all errors than events that are more widespread (Camera

et al. 2014).

To highlight the influence of specific stations on the

interpolated surfaces, we plot the station observations

directly over the predicted surfaces for 1 January of four

different years for the island of Hawaii (Fig. 11). On the

wettest of the four days shown (Fig. 11b), MAE was

14.6mm, on the driest day of the four (Fig. 11c) MAE

was ,0.01.

The MAE at each of the 142 stations used in the

temperature interpolation for Tmax and Tmin are shown

in Fig. 12. The highest errors were found at high eleva-

tions on the Hawaii Island for both Tmax and Tmin. Er-

rors were low at high elevations on Haleakala volcano,

where station density is high. Again, no relationship

between elevation and error was identified.

e. Seasonal interpolation errors

LOOCV results were analyzed to identify the effects

of season and the number of available predictor stations

on the associated errors. ANOVA identified a signifi-

cant (a 5 0.05) difference in MAE between seasons for

all variables and on all of the islands (Table 5). Wet

seasonmonths (November–April) had significantly (p,
0.05) higher errors than during the dry season months

(May–October) for rainfall (Fig. 13). The difference

in errors between calendar months on each of the four

Islands ranged from 1.2 to 1.6mm and the total range of

errors on all of the islands was 0.8mm (June, Maui Nui)

to 3.5mm (February, Kauai). For Tmax and Tmin results

FIG. 10. Spatial distribution of (top) relativemedian errors and (bottom) absolutemedian absolute errors in rainfall

prediction across the state of Hawaii.
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varied by island and the highest average errors were

found during the coldest months (January–March) ex-

cept on Maui, where the highest errors were found be-

tweenMay and September. Overall, the range inmonthly

average errors over the year for both Tmax (0.68–1.28C)
and Tmin (0.98–1.88C) was small.

The Spearman’s rank correlation coefficient was used

to determine if the number of stations used in the daily

interpolation had an effect on the error. For rainfall, re-

sults indicate a weak to moderate negative relationship

between MAE and the number of available stations

(Table 6). This relationship was found to be significant

only on the island of Oahu (p 5 0.04). For Tmax, the re-

lationship between station count and error was negative

for Hawaii, Maui Nui, and Kauai but positive for Oahu

(all relationships were significant). ForTmin, the strongest

dependence on station number was found on Hawaii

Island and a significant relationshipwas identified between

the two variables on Hawaii Island, Maui Nui, and Kauai.

5. Summary and discussion

In this work, 250-m gridded datasets for daily rainfall

and near-surface air temperature (minimum and maxi-

mum) for the period 1990–2014 were created for the

main Hawaiian Islands. The datasets were produced

using a climatologically aided interpolation (CAI) scheme,

where the station anomalies were interpolated using an

optimized inverse distance weighting approach, and then

combined with mean maps to produce daily maps for each

of the three variables. The maps are spatially and serially

complete throughout the 25-yr period (three sets of 9131

grids with no gaps).

In this analysis, the MAE for gridded rainfall esti-

mates is 2.3mm when all rainfall was considered. These

errors were similar to MAE for daily predictions of

precipitation reported by Hunter and Meentemeyer

(2005) for California, who used a similar CAI scheme to

calculate anomalies and an ordinary kriging approach

for predictions of daily rainfall and temperature at a

coarser spatial resolution (2 km) across the state of

California (MAE 5 2.5mm). Mean error statistics,

however, may not be the most effective way to assess the

overall quality of these maps. Errors in this study varied

considerably across rainfall thresholds. When rainfall

was low (rainfall , 1mm), relative errors were high,

average probability of detection was high (91%), and

the average event prediction bias was 120%. When

rainfall was greater than 1mm and less than 10mm the

average probability of detection was 74% and the event

FIG. 11. Interpolated rainfall and station rainfall observations for 1 Jan of four different

years: (a) 1990, (b) 1993, (c) 1995, and (d) 2014. Both interpolated stations and observations are

set to the same color scale. Years were selected to show a range of different rainfall patterns.
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prediction bias was near zero. Beyond the 10-mm

threshold, detectability of rainfall events was lowered

and event prediction bias became increasingly negative

as rainfall increased. This pattern is primarily a result of

an interpolation-related smoothing effect.

In complex topographical settings a sparse station

network can introduce additional errors into the final

data product. The idea behind IDW is that the stations

closest to the interpolation point will have the greatest

influence on that point. So, if station density is high in

an area with homogeneous climatic conditions then

uncertainty will be reduced. In areas of low station

densities, uncertainty is increased especially if the in-

terpolated point is drawing information from stations

located in heterogeneous climatic zones (e.g., above

versus below the TWI), subject to different wind exposure

(e.g., windward versus leeward), or influenced by other,

smaller-scale topographical discontinuities (e.g., ridge

versus valley). This can be seen explicitly in the PoP

analysis, where stations at or near the mean TWI have

some of the highest bias. This is certainly one of the

limitations of IDW, and this type of error is essentially

unavoidable using this method.

FIG. 12. Spatial distribution of MAE for (top) daily maximum and (bottom) daily minimum near-surface air

temperature prediction across the state of Hawaii.

TABLE 5. ANOVA test results. RF is rainfall, F is the critical F

statistic, and p is a measure of statistical significance.

Hawaii Maui Nui Oahu Kauai

Variable F p F p F p F p

RF 2.67 0.002 10.31 0.000 5.04 0.000 3.48 0.000

Tmax 7.87 0.000 4.65 0.000 2.68 0.002 2.49 0.005

Tmin 4.04 0.000 4.11 0.000 4.37 0.000 2.23 0.013
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For temperature, the average prediction errorwas63.88
and 63.78C for maximum and minimum temperature,

respectively. A tendency for the interpolation method to

overpredict temperature for Tmax (MBE 5 11.18C) and
Tmin (MBE 5 11.58C) was identified. These errors are

greater than the MAE for daily predictions of Tmax

(62.08C) and Tmin (61.78C) reported by Hunter and

Meentemeyer (2005), who used ordinary kriging to in-

terpolate data at a 2-km spatial resolution. Errors shown

here were also greater than errors presented by Dodson

and Marks (1997), who used an IDW approach to in-

terpolate temperature at a 1-km resolution and reported

MAEof61.28 and61.38C forTmax andTmin, respectively.

We consider the errors presented here to be quite large

when compared to the diurnal range in temperature,

however, as a first attempt at mapping daily temperature

we are satisfied with the result. All interpolated estimates

have errors. We have characterized these errors through

cross-validation to allow data users to assess the level of

uncertainty in the gridded products.

The interpolation performance varied seasonally.

For rainfall, this result may reflect differences among

months in the amounts of rainfall received. This is

likely a direct influence of the CAI approach due to the

fact that rainfall can deviate more substantially from the

climatological pattern in wet season months than dry

season months. The lowest (highest) errors were found

during the driest (wettest) months, but overall the range

in errors was small (,1.6mm). Interpolation errors

for Tmax and Tmin also significantly differed between

months and the range of these differences was also

small (,18C) for Hawaii Island, Maui Nui, and Oahu.

A slightly higher range in errors (,1.88C) on Kauai

might be attributed to a small number of stations avail-

able for the LOOCV over the period of record.

We expected that interpolation error would increase

as the number of available predictor stations decreased.

For rainfall, correlations between error and the number

of predictor stations were in the negative on Hawaii

Island, Maui Nui, and Oahu (no relationship on Kauai),

indicating that a decrease in station density can increase

interpolation errors. For the temperature variables,

mixed results were found in this same comparison. For

Tmin, a decrease in station count increased errors on

Maui Nui and decreased the errors on Hawaii Island,

Oahu, and Kauai. One explanation for this discrepancy

TABLE 6. Spearman rank test results for the dependence of the

error on station count, where rs is the Spearman’s rank correlation

coefficient.

rs p Strength

RF

Hawaii 20.20 0.08 Weak

Maui Nui 20.28 0.06 Weak

Oahu 20.41 0.04 Moderate

Kauai 0.00 0.24 Very weak

Tmax

Hawaii 20.16 0.01 Weak

Maui Nui 20.49 0.00 Moderate

Oahu 0.23 0.00 Weak

Kauai 0.14 0.00 Very weak

Tmin

Hawaii 0.72 0.00 Strong

Maui Nui 20.36 0.00 Weak

Oahu 0.02 0.75 Very weak

Kauai 0.29 0.00 Weak

FIG. 13. Mean absolute monthly error of (left) rainfall, (center) maximum temperature, and (right) minimum temperature for

(a)–(c) Hawaii Island, (d)–(f) Maui Nui, (g)–(i) Oahu, and (j)–(l) Kauai.
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is that regression equations used to create themeanTmax

and Tmin maps were derived from data originating from

all of the islands, thus biasing results for individual is-

lands. For example, the correlations on Maui Nui be-

tween station density and error were in the negative

direction which is what would be expected. Maui Nui

was also the island with the highest average number of

stations for Tmax and second highest for Tmin, as well as

the island with the most number of stations above the

mean TWI base height.

TheCAI approach produces some level of consistency

in day-to-day results regardless of the variation in the

number of stations used in the interpolation because, at

the very least, it captures the general pattern of mean

temperature fields. Errors in both rainfall and temper-

ature maps are introduced at the point of measurement,

during the calculation of anomalies, and during the in-

terpolation. For rainfall, it is important to consider that

themagnitude of errors at individual stations, on individual

days, and during different months/seasons are a function

of the amount of rainfall received. In terms of relative

error, this method presented here consistently performs

better with increasing rainfall. In general, the drier the

station/day/month/season the higher the error will be.

Camera et al. (2014) identified a similar pattern with

IDW interpolation at the daily time step suggesting that

the spatial variation in rainfall on any given day will

influence the error at a particular station. The cross-

validation results of this study clearly show how the

amount of rainfall at a given station, the different spatial

variability of stations, and the different densities in the

original observation dataset can influence uncertainty.

We encourage all users of these products to avail

themselves of the detailed uncertainty analysis provided

here when analyzing environmental phenomena based

on these products.

The methods presented here provide an effective

distance-weighted approach for mapping rainfall and

temperature in a topographically diverse region and

at a fine temporal resolution. The integration of long-

term climate maps with point observations, helps to

improve the accuracy of the daily maps, because geo-

graphical features such as varied terrain, proximity to

the coast, exposure to the prevailing winds, and the

influence of the TWI are retained in each map. Com-

pared with other mapping efforts at the daily time step

(using variousmethods and at various spatial scales),MAE

errors presented here were similar for rainfall but higher

for both Tmax and Tmin (see Dodson and Marks 1997;

Hunter and Meentemeyer 2005; Hofstra et al. 2008).

Despite known errors, this approach provides a valuable

dataset for a wide range of geographical research requiring

spatially explicit maps of these variables.

Ongoing research efforts will continue to examine

tunable portions of the CAI approach, including possi-

ble addition of explicit prediction of occurrence of

rainfall at each grid point (e.g., Thornton et al. 2012;

Clark and Slater 2006; Newman et al. 2019a,b). Finally,

we are currently developing infrastructure to produce

near-real-time monthly (and eventually daily) maps of

rainfall in Hawaii using these or other related methods.
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