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Abstract:

In order to quantify total error affecting hydrological models and predictions, we must explicitly recognize errors in input data,
model structure, model parameters and validation data. This paper tackles the last of these: errors in discharge measurements
used to calibrate a rainfall-runoff model, caused by stage–discharge rating-curve uncertainty. This uncertainty may be due
to several combined sources, including errors in stage and velocity measurements during individual gaugings, assumptions
regarding a particular form of stage–discharge relationship, extrapolation of the stage–discharge relationship beyond the
maximum gauging, and cross-section change due to vegetation growth and/or bed movement. A methodology is presented
to systematically assess and quantify the uncertainty in discharge measurements due to all of these sources. For a given
stage measurement, a complete PDF of true discharge is estimated. Consequently, new model calibration techniques can be
introduced to explicitly account for the discharge error distribution. The method is demonstrated for a gravel-bed river in
New Zealand, where all the above uncertainty sources can be identified, including significant uncertainty in cross-section form
due to scour and re-deposition of sediment. Results show that rigorous consideration of uncertainty in flow data results in
significant improvement of the model’s ability to predict the observed flow. Copyright  2010 John Wiley & Sons, Ltd.
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INTRODUCTION

Conceptual hydrological models are important tools for
understanding and predicting catchment responses to
measured or modelled climate and land-use scenarios.
However, the necessary gross simplifications which occur
when translating a complex perceptual model of catch-
ment behaviour into a conceptual model lead to recog-
nized model structural omissions and model parameters
which cannot be directly related to measured physi-
cal properties (Beven, 2006). Calibration methods must
therefore be used to identify model parameters, based
on measured data. The most commonly used calibra-
tion methods, based on minimization of squared errors,
make the implicit assumption that the only source of
error is a Gaussian ‘measurement error’. In truth, there
are many different sources of error including uncertain-
ties in input data (e.g. precipitation, temperature), cali-
bration/validation data (e.g. streamflow), model structure
and parameters. Where the incidence and distribution of
each of these error sources is not explicitly recognized
(a difficult task in very many cases; Beven et al., 2008),
the calibration process may yield biased parameter esti-
mates (e.g. Kavetski et al., 2006a,b;Vrugt et al., 2008;
Thyer et al., 2009). This in turn leads to biased model

* Correspondence to: Hilary McMillan, National Institute of Water and
Atmospheric Research Ltd, Christchurch, New Zealand.
E-mail: h.mcmillan@niwa.co.nz

predictions, and a loss of the potential opportunity to
learn more about model error sources and methods to
mitigate these.

Our aim in designing model calibration techniques
must therefore be to properly account for each uncertainty
source and appropriately quantify or parameterize the
resulting error distribution, which may be non-stationary
in time (e.g. see Freer et al., 2004). This paper takes
one step towards that goal, by presenting a methodology
to explicitly quantify one of these uncertainty sources,
namely errors in the computed discharge series used to
calibrate a rainfall-runoff model, caused by uncertainty in
the rating curve used to transform continuously measured
stage data into discharge. This uncertainty in turn derives
from a combination of sources, including errors in stage
and velocity measurements during gaugings, assumption
of a particular form of stage–discharge relationship,
extrapolation of the stage–discharge relationship beyond
the maximum gauging and cross-section change due
to vegetation growth or bed movement. This paper
demonstrates how, using knowledge of each of these
factors, a complete PDF of true discharge may be
estimated for a given measured stage value.

Several previous studies have investigated methods
of including uncertainties in the stage–discharge rela-
tionship, from the first to suggest a statistical frame-
work for those uncertainties (Venetis, 1970) to many
modern studies (Petersen-Øverleir, 2004; Moyeed and
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Clark, 2005; Pappenberger et al., 2006; Reitan and
Petersen-Øverleir, 2006; 2009; Di Baldassarre and Mon-
tanari, 2009; Krueger et al, 2009; Liu et al., 2009). These
all rely on fitting a single set of gaugings (i.e. mea-
sured stage/discharge points) using a single rating curve
of specified form, and investigate the uncertainty in the
parameters of that rating curve. For example, Pappen-
berger et al. (2006) use eight data points to fit a power-
law curve (Manning equation formulation) and hence
determine an ‘envelope curve’: upper and lower accept-
able limits on discharge prediction. Krueger (2009) fits
stage–discharge relationships to two weirs at experimen-
tal field sites, with the power-law form and bed level
defined by the appropriate weir equation, and again mod-
els are scored as having ‘perfect fit’ within the resulting
envelope curve, with linear decline in performance mea-
sure outside this.

Other studies have considered the possible effects of
uncertainty in the stage–discharge relationship on cal-
ibration of, and predictions from, rainfall-runoff mod-
els. Aronica et al. (2006) calibrated a conceptual linear–
nonlinear rainfall-runoff model using upper and lower
bounds for multipliers of a rating curve and demon-
strated the resulting change in prediction limits. Mon-
tanari (2004) simulated uncertainty in the measured dis-
charge by adding Gaussian errors (bounds calculated by
consideration of uncertainty sources). Optimized param-
eter sets using different error realizations were then com-
pared to show induced parameter uncertainty. However,
these two studies are both restricted to sequential consid-
eration of alternative rating curves, as opposed to admis-
sion of uncertainty during model calibration.

This paper sets out to build on these previous meth-
ods in three ways. Firstly, to extend the ‘envelope curve’
method suitability to rivers where there is significant
uncertainty in cross-section form due to scour and re-
deposition of sediment, and hence sequential gauging
measurements may not all belong to a single rating curve.
Secondly, to produce an explicit PDF of discharge for
any given stage, as opposed to upper and lower limits
on acceptable discharge. Lastly, to demonstrate how this
empirical discharge PDF can be used to form a likeli-
hood function, and used within a Markov Chain Monte

Carlo (MCMC) method for parameter calibration with
full consideration of uncertainty in the stage–discharge
relationship.

CATCHMENT

The method is demonstrated for a gravel-bed river in New
Zealand, the Wairau river in the northern South Island,
New Zealand (Figure 1). The Wairau drains an area of
3825 km2 and elevations in the catchment range from
sea level to 2309 m. Vegetation in the Wairau includes
pasture throughout the southern hills, native ever-green
beech forest in the mountains to the west and southwest,
a mix of native beech forest and exotic pine forest on
the northern ranges, and vineyards on the Wairau plains
(Figure 1). The Wairau River is a braided gravel-bed
river that is approximately 100 m wide in the lower
reaches. Rainfall in the Wairau is lowest over the Wairau
plains and southern hills (600 mm/year) and highest over
the western ranges (5000 mm/year). There is a small
hydropower scheme in the middle reaches of the Wairau
and some irrigation on the Wairau plains, but these have
only minor effects on catchment streamflow.

The Wairau is managed for water allocation and flood
mitigation purposes; these applications require long- and
short-term estimates of discharge data statistics (Rae,
1987; Rae and Wadsworth, 1990; Williman, 1995). In
addition to the input and model structural uncertainty
which are usually assumed to dominate more stable river
systems (e.g. Kavetski et al., 2006a,b), scour and re-
deposition of the bed gravels (and additionally anthro-
pogenic gravel extraction) are known to introduce addi-
tional errors into models of the system. Current rainfall-
runoff models in use in the catchment use a deterministic
rating curve established from gauging data and adjusted
over time to include new data points and discard older
points which are no longer deemed representative (Ibbitt
and Wild, 2005). This is problematic in the case of flood-
stage gaugings which are rarely collected. The process
relies on expert judgement to determine the frequency
and extent to which the curve should be updated (Whal-
ley et al., 2001), and implicitly on an assessment of the
balance between gauging errors and rating-curve change.

Figure 1. The Wairau River basin, showing (left) location; (middle) elevation, digital river network, location of discharge gauging sites (circles) and
rainfall stations (triangles); and (right) land cover. For TopNet simulations the Wairau Basin is disaggregated into 380 sub-catchments, linked with

the digital river network (middle). Figure reproduced from Clark et al. (2008)
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The Wairau therefore presents a good example of a catch-
ment where the assumption of zero uncertainty in the
rating curve is unjustified and a rainfall-runoff model cal-
ibration technique that is able to account for rating-curve
estimation errors would be a valuable tool.

DATA AND MODEL

Flow data

Flow gauging has been undertaken at various locations
on the Wairau River since 1937, using stage recorders
backed up by gaugings to determine the rating curve
(Rae, 1987). The catchment outlet site at Barnett’s Bank
is used in this study, and represents the longest and
most reliable record for the Wairau. Despite this, there is
considerable scatter in the stage–discharge relationship:
refer to Figure 2 for a photograph of the gauged cross
section and Figure 4 which shows individual gaugings.
This scatter in part represents the difficulties associated
with flow gauging in braided, gravel-bed rivers. For the
majority of its length the Wairau has a mobile gravel
bed, where frequent movement of gravel changes the
cross section of the river and determines the relative flow
in each of the river braids. This includes the Barnett’s
Bank gauging site, where records show that between
2005 and 2008 the river thalweg switched from the braid
nearest to the true left bank where the stage recorder is
located, to the true right bank, and back again. The impact
of river bed movement at this location outweighs any
hysteresis effects which are minor due to the relatively
steep gradient of the Wairau. The site is also used for
gravel extraction which alters the channel cross section.

Frequent gaugings go some way in identifying such
changes in flow regime and hence in the required rating
curve; however, undertaking a new set of gaugings at a
full range of river flows is an extended process which
may not keep pace with river bed movement. Gaugings
are taken by wading at low flows (stage height less than
3 m on the gauge) and the exact cross section used varies
depending on braid locations to ensure the safety of the

Figure 2. Photograph of the gauged cross section at Barnett’s Bank

field team. At high flows gaugings are taken from the road
bridge crossing the Wairau close to the gauge, and hence
may record cross-section changes due to scour around
the bridge piers. For flood flows (stage heights over 5 m),
acoustic Doppler current profiler (ADCP) gauging from a
jet-boat is the preferred method, although gaugings from
the bridge are still used in some cases. It is particularly
hard to identify ratings for high-flow events where scour
and fill is continuously occurring during the event (the
effects of this can be seen as ‘sawtooth’ patterns in
stage recordings relating to waves of gravel passing the
recorder, and are also recorded as a non-zero bed velocity
during ADCP gaugings; not shown). Clearly multiple
gaugings would be required to fully characterize the
uncertainty at flood flows; however, practical constraints
mean that a limited number of such gaugings can be
collected.

Model

The distributed rainfall-runoff model TopNet was used
in this study to provide flow predictions in the Wairau.
TopNet was developed by combining TopModel (Beven
and Kirkby, 1979; Beven et al., 1995), which is most
suited to small watersheds, with a kinematic wave chan-
nel routing algorithm (Goring, 1994) so as to have a
modelling system that can be applied over large water-
sheds, using smaller sub-basins as model elements (Ibbitt
and Woods, 2002; Bandaragoda et al., 2004; Clark et al.,
2008). TopNet uses TopModel concepts for the repre-
sentation of sub-surface storage controlling the dynamics
of the saturated contributing area and baseflow reces-
sion, with additional components for evapotranspiration,
interception (based on the work of Ibbitt, 1971), infiltra-
tion (using a Green-Ampt mechanism; Mein and Larson,
1973) and soil zone. Kinematic wave routing moves the
sub-basin inputs through the stream channel network.
Complete model equations are provided by Clark et al.
(2008).

The model uses input precipitation and climate data
from Tait et al. (2006) who interpolated data from over
500 climate stations in New Zealand across a regular
0Ð05° latitude–longitude grid (approximately 5 km ð
5 km), including data from 12 climate stations within
the Wairau catchment. These data are provided at daily
timesteps, and are disaggregated to hourly data before use
in the model, based on an interpolation of the sub-daily
distribution at the climate stations. In this study, we use
data from the winter months of 2004 and 2006, in both
cases including flood peaks where discharge exceeded the
mean annual flood.

To apply TopNet in the Wairau, TopNet requires infor-
mation on catchment topography, physical and hydro-
logical properties. This information is available from a
variety of sources. The New Zealand River Environment
Classification (REC; Snelder and Biggs, 2002) includes
a digital network of approximately 600 000 river reaches
and related sub-basins for New Zealand. A 30-m Digital
Elevation Model (DEM) provides topographic proper-
ties. Land cover and soil data are available from the
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Table I. TopNet model parameters

Name Estimation

Sub-basin parameters
f (m�1) Saturated store sensitivity Constant D 12Ð4 (multiplier calibrated)
K0 (m/h) Surface saturated hydraulic conductivity Constant D 0Ð01 (multiplier calibrated)
�1 Drainable porosity From soils (multiplier calibrated)
�2 Plant available porosity From soils (multiplier calibrated)
D (m) Depth of soil zone From soils (multiplier calibrated)
C Soil zone drainage sensitivity 1
ϕ (m) Wetting front suction From soils
V (m/s) Overland flow velocity Constant D 0Ð1 (multiplier calibrated)
CC (m) Canopy capacity From vegetation
Cr Intercepted evaporation enhancement From vegetation
A Albedo From vegetation
Lapse (°C/m) Lapse rate 0Ð0065

Channel parameters
N Mannings n Constant D 0Ð024 (multiplier calibrated)
A Hydraulic geometry constant 0Ð00011
B Hydraulic geometry exponent 0Ð518

State variables Initialization
z0 (m) Average depth to water table Saturated zone drainage matches initial observed flow
SR (m) Soil zone storage 0Ð02
CV (m) Canopy storage 0Ð0005

New Zealand Land Cover Database (LCDB) and the New
Zealand Land Resource Inventory (LRI; Newsome et al.,
2000). The river basin was first disaggregated into indi-
vidual sub-catchments, each one of which becomes a
model element. We use the Strahler 3 sub-catchments
from the REC, which have a typical size of 10 km2, and
split the Wairau basin into 380 elements. The REC also
provides the geometrical parameters of the river network.
Frequency distributions of the topographic wetness index
and distance to streams are calculated from the DEM.
The wetness index is formulated as ln(a/tan ˇ), where
a is the contributing upstream area and ˇ is surface
slope (Beven and Kirkby, 1979). Average soil and land-
cover parameters are derived from the LRI and LCDB,
respectively. In total, 12 parameters are required for each
sub-catchment, of which 6 may be specified using the
information described above; the remaining 6 must be
calibrated (refer to Table I for descriptions of all the
parameters). In addition, the Manning’s n value for the
sub-catchment channel section must also be calibrated.

UNCERTAINTY QUANTIFICATION

As previously described, discharge is derived at Barnett’s
Bank using a rating curve to transform stage measure-
ments into discharge estimates (Ibbitt and Wild, 2005).
In order to quantify discharge uncertainty, we use the
concept of an ‘uncertain rating curve’ which decomposes
into a PDF of discharge for any given stage measure-
ment. To create the uncertain rating curve, we account for
the three components of uncertainty that were considered
most important at this site:

1. Lack of knowledge about the current cross-section state
chiefly due to bed movement, but also possibly affected
by seasonal growth of vegetation.

2. Uncertainty in individual gauging measurements, via
inaccuracies of stage and velocity measurement, and
interpolation between point velocity measurements.

3. Uncertainty as to the correct form of the rating curve,
leading to its approximation by a functional type, e.g.
power law.

We now explore each of these components in more
detail to define our methodology:

Cross-section state

The first component relates to the scatter in the set
of fstage, dischargeg data points. These data represent
snapshots of river state during the continuous process
of bed movement and channel cross-section change, and
hence cannot be lumped into a single rating curve.
Instead, we assume that the most significant changes in
bed form occur during flood events, and hence divide the
complete gauging series into coherent sets between major
events, each of which represents a more stable phase in
the bed evolution. We used a 0Ð5-year return period as
the threshold to define a ‘major event’; however, this
measure is subjective, and should be set with knowledge
of the individual gauging site. These gauging sets are
each assumed to represent a possible state of the current
cross section, and hence are used to construct possible
rating curves. Low flows may be additionally affected by
sedimentation between floods but this would be captured
by a spread of gaugings and hence higher uncertainty
within the gauging set. The number of individual points
in each gauging set varies from 4 to 12, depending on the
length of the stable phase and the frequency of gauging
during that time (refer to Figure 4 which differentiates the
gauging sets). Phases where no high stage measurement is
made contribute to greater uncertainty at high flows; this
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is in contrast to the previous deterministic rating curves
used at Barnett’s Bank which were all forced through the
highest recorded gauging. These greater uncertainties are
retained when the uncertain rating curve is constructed,
accounting for the component of uncertainty relating
to rating curve extrapolation. Similarly, the uncertainty
component relating to shifts in hydraulic geometry is
captured through the multiple low-flow gauging sets.
When making future predictions, no distinction is made
as to which gauging set is most representative, as it is
recognized that rapid changes in bed form due to gravel
transportation during a flood event may significantly alter
the cross section in a short period of time. In rivers where
bed form changes only over long timescales, it might be
more appropriate to weight recent gaugings more highly
than past gaugings.

Uncertainty in gauging measurement and rating curve
form

These two points are considered together. To account
for the uncertainty in gauging measurements and hence
rating-curve shape, our method builds on the idea of
a fuzzy rating curve developed by Pappenberger et al.
(2006) and Krueger et al. (2009). We accept the common
assumption that the gauging discharge measurements are
corrupted by an error of size proportional to the discharge
magnitude, here approximated as a truncated Gaussian
distribution centred on the true discharge [Equation (1)]

QMeasured

/ N�QTrue, �2� where jQMeasured � QTruej < 3�
D 0 where jQMeasured � QTruej ½ 3�

�1�

where QMeasured is the measured discharge, QTrue is
the true discharge. The variance of the distribution is
chosen so as to give a 95% confidence interval at
8% of the true discharge, a typical value for discharge
uncertainty which is individually calculated for each
Barnett’s Bank gauging by the hydrometrists taking into
account equipment and method accuracy. Hence, we set
the standard deviation � D 0Ð04QTrue. It is preferable
to set the variance according to site-based knowledge,
as here; however, alternatively, standard values could
be used such as those provided by Pelletier (1988) or
Whalley et al. (2001) which are comparable with the
value used here.

The distribution is truncated at 3� (12%) error, which
captures >99% of the distribution, while avoiding very
large error values which are not considered reason-
able (the 12% bound only represents possible error for
a single gauging and does not include error due to
rating curve interpolation/extrapolation or cross-section
change). Given this error form, the probability distribu-
tion for QTrue can then be calculated numerically for a
given gauging measurement of QMeasured; this results in
a skewed distribution due to the assumption that error
magnitude increases with discharge. Accepting the com-
mon assumption that stage error is invariable with stage

value, and again using typical uncertainty values recorded
for Barnett’s Bank gaugings by the hydrometrists on-
site, true stage is modelled using a Gaussian error cen-
tred on the measured stage and with standard deviation
of 0Ð02 m. As with discharge uncertainty, this value is
comparable or conservative with respect to previous stud-
ies (Van der Made, 1982; Petersen-Øverleir and Reitan,
2005).

Given error PDFs for discharge and stage, random
samples may be drawn from these distributions to give
many possible pairs of ‘true discharge’ and ‘true stage’
for each gauging point in the rating set. Using a Monte
Carlo approach, multiple sample sets are taken to approx-
imate the true joint distribution of the gauging points.
Each sample set now becomes the basis for fitting of a
rating curve.

To fit the rating curve, a variation on the method pro-
posed by Krueger et al. (2009) is used. The method is
illustrated in Figure 3 and relies on using each combina-
tion of three sample points in the set in turn (allowing
exact fitting via a three-parameter power law) to produce
multiple possible rating curves:

1. Loop through all combinations of three sample points.
2. Fit the power-law equation Q D a �h C b�c exactly to

these three points (this is solved numerically).
3. Retain fitted rating if the curve intersects the error

PDFs for all remaining sample points in the gauging
set other than the three chosen in step 1.

Through this approach, we limit the individual rating
curves to a single-segment, power-law form. This low-
complexity approach is commensurate with the often
limited number of sample points in a single sample set.
If a denser set of gauging measurements was available,
formulations such as alternative models or multi-segment
curves could be considered. If prior information were
available as to the expected rating curve parameter
values, it could also be included here via a Bayesian
approach. Although the individual curve form is thus
restricted, the final uncertain rating curve may take a free
and unparameterized shape as it combines thousands of
individual curves (refer to following section and Figure 4
for an example), accounting for uncertainty in rating-
curve form.

Constructing the uncertain rating curve

The fitted power-law curves for each sample set and for
each gauging set are combined to produce the uncertain
rating curve, as follows. First, the rating curves are
weighted such that each gauging set has equal total
weight (as previously stated, no distinction is made as
to which gauging set is most representative) and all
rating curves within the same gauging set have equal
weight. Then, for each value of stage for which discharge
estimation is required, the discharge values given by all
the rating curves are ordered. The constraint b > �h is
enforced for the rating-curve parameters, i.e. gaugings
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Figure 3. Illustration of the proposed Monte Carlo sampling method used to fit possible rating curves. (1) Select three points from the gauging set;
(2) take a random sample of true stage/discharge; (3) fit the power-law rating curve and check consistency with remaining points; and (4) repeat for

multiple samples

that were taken at a higher bed level where the gauged
height h is lower than the current bed are ignored. There
are approximately 105 individual rating curves. Finally,
the weighted discharge values combine to provide a CDF
for discharge. The form of the CDF hence represents
the likelihood of each discharge value based on the
distribution of the Monte Carlo samples.

RESULTS OF RATING CURVE ESTIMATION

The method described was used to estimate the form
of the uncertain rating curve for the Wairau catchment
outlet stage recorder at Barnett’s Bank. The results are
summarized in Figure 4, which shows quantiles of the
estimated true discharge, plotted against the recorded
stage.

The results show that the combination of gauging sets
gives a unique uncertain rating curve with a form tailored
to the Barnetts Bank site. For example the log space
plot (Figure 4B) shows two preferred states at low flows,
probably corresponding to different river braids carrying
the flow thalweg. At flood flows uncertainty is high due
to the limited number of gaugings, up to š23% of the
median discharge.

MODEL CALIBRATION

Evaluation measure

In order to assess model flow predictions against uncer-
tain validation data, a performance measure must be cho-
sen which reflects the discharge uncertainty in addition

to parametric and structural uncertainty. Previous studies
have used a variety of methods to do this. Pappen-
berger and Beven (2004) use a ‘multicomponent map-
ping’ technique, where an expected observation error
structure is used to define membership values according
to the distance between observed and modelled hydro-
graphs. Krueger et al. (2009) define a timestep-based
performance measure which scores any model prediction
within the discharge envelope curve (min/max limits of
the uncertainty estimation) as an exact match, and oth-
erwise calculates the ratio of the distance between the
prediction and the envelope curve to the width of the
envelope curve; contrastingly, Liu et al. (2009) use a
triangular performance measure defined via a ‘limits of
acceptability’ approach.

The result of the rating-curve estimation for Barnett’s
Bank gauging station produced relatively wide uncer-
tainty bounds due to the mobile nature of the river
cross section at the gauging site (Figure 4). However,
to avoid overstating the uncertainty in the observed dis-
charge, we require a performance evaluation method
which retains maximal information content from the
gauging data. The method should therefore discrimi-
nate between values within the envelope of possible
true discharge, using the CDF produced by the rating-
curve estimation procedure. Hence, we use a timestep-
based method, which stores the conditional probabil-
ity of the modelled flow, given the observed flow for
each timestep: this is an empirical function based on
the gauging data and does not have an analytical form.
The CDF for estimated discharge at Barnett’s Bank is

Copyright  2010 John Wiley & Sons, Ltd. Hydrol. Process. 24, 1270–1284 (2010)
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shown in Figure 5 for various measured stage values,
and Figure 6 shows how this information translates into
discharge bound quantiles for an example section of flow
record. The conditional probabilities are unique to the
gauging record at the Barnett’s Bank site: note, e.g. that

the lower density of gauging points in the lower quan-
tiles of the uncertain discharge curve (Figure 4) lead to
skewed CDFs (Figure 5) which in turn lead to lower
uncertainty limits that are wider than the upper limits
in Figure 6.
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A variety of methods could be used to aggregate
the timestep-based likelihoods over the modelled time
period: in classical Bayesian inference the product of the
individual probabilities (p) would be used:

p��jy� D
∏N

1
p��jy� �2�

were y is a vector of observed data of length N,
and � are the model parameters. We assume here a
uniform bounded prior. However, this method assumes
independence of observed data between timesteps which
is unlikely for hydrological time series. Instead, we use
here a modification of this product of probabilities which
accounts for the reduction of information content of the
data due to such autocorrelation:

Op��jy� D
[∏N

1
p��jy�

]ESS
N �3�

where ESS is the ‘Effective Sample Size’: a measure
of the information content of the data series. Several
explanatory notes are required:

1. To illustrate the coherence of this form of the con-
ditional probability distribution, consider the classical
assumption of independent Gaussian residuals, com-
bined with a Jeffrey’s prior on �2. Box and Tiao (1973)
derive the likelihood function:

p��jy� / M����N/2 �4�

where M��� is the sum of squared errors and N is
the number of data points. Following their derivation,
but substituting the revised definition Op��jy� as above
[Equation (3)], it can be shown that the likelihood
function takes the form:

Op��jy� / M����ESS/2 �5�

hence showing that this revision of the product of
probabilities gives the expected likelihood function when
used with standard assumptions.
2. We use ESS (Thiebaux and Zwiers, 1995; Wilks, 1997)

as a measure of information content. This measure is
designed to represent the equivalent number of inde-
pendent data points and uses autocovariance to quan-
tify the degree of time coherence in the data series.
The ESS is calculated from the true sample size N as
follows:

ESS D N∑�DC�N�1�

�D��N�1�

(
1 � j�j

N

)
����

�6�

where � is time lag and ���� is the corresponding
autocorrelation function.
3. While the methods in this study account for rating-

curve error, we recognize that additional uncertainty
components (input uncertainty, model structural uncer-
tainty), not explicitly characterized here, also affect
model response. This has important implications for
the multiplicative form of the likelihood function, as

prediction for a single timestep outside the empirical
discharge envelope (which is likely due to these addi-
tional error components) would give a total probability
of zero. Therefore, we use the simplest method possible
to incorporate those effects: a uniform (small) error
constant ε is added to the response surface before the
multiplicative step.

p��jy� D max�p��jy�, ε� �7�

This addition has the result that simulations which lie
outside the flow uncertainty bounds in some timesteps are
disadvantaged but not rejected completely. This step is
also important to improve the convergence speed of the
MCMC algorithm (Section on MCMC Parameter Search
Method) by allowing simulations to be properly ranked.
In the extreme case where no predictions lie within the
uncertainty bounds, the simulation would be ranked lower
than any other realization, and quickly rejected by the
MCMC algorithm.

MCMC parameter search method

As has been extensively discussed by Beven (1993;
2006; Beven and Binley, 1992) and others (Wagener and
Gupta, 2005), the many sources of uncertainty in a hydro-
logical model application, including but not limited to
the measurement uncertainty discussed in this paper, lead
to equifinality of parameter sets in providing acceptable
model performance. Performance is judged with refer-
ence to the observed data, here using the evaluation mea-
sure described in the section on Evaluation Measure. The
aim of our calibration technique is to enable an efficient
search of the parameter space, identifying those regions
where model performance is considered satisfactory in
the light of observation error on the discharge. The task is
made more difficult by the typically complex nature of the
model response surface (Duan et al., 1992; Sorooshian
et al., 1993) which may be exacerbated by artefacts of
model timestep and solution techniques (Kavetski et al.,
2006c,d).

In response to these difficulties, MCMC methods have
gained increasing popularity, providing targeted sam-
pling of the parameter space and hence considerable
efficiency savings over uniform random sampling (Bla-
sone et al., 2008). These methods enable simulation of
complex multivariate distributions by casting them as the
invariant distribution of a Markov Chain. We use here
a popular version of the original Metropolis-Hastings
MCMC algorithm: the adaptive SCEM-UA algorithm
(Vrugt et al., 2003) which combines the Metropolis-
Hastings sampler with the SCE-UA optimization method
(Duan et al., 1992), using information exchange between
multiple sampler chains to improve convergence rates.

MCMC algorithms have traditionally been used to
sample posterior distributions derived from classical sta-
tistical likelihood functions (e.g. Thiemann et al., 2001;
Vrugt et al., 2003). However, the careful use of ‘infor-
mal’ likelihood (performance) measures chosen using
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Figure 7. Parameter estimation incorporating rating-curve uncertainty: 90% confidence interval for streamflow at Barnett’s Bank during example
section of model calibration period. Comparison of results using deterministic rating curve (A) versus rating curve including uncertainty (B)

modeller judgement can improve the ability of the algo-
rithm to fully explore the response surface (McMillan
and Clark, 2009; Smith et al. (2008)). Here the evaluation
measure described in the section on Evaluation Measure
best reflects our knowledge of the information and uncer-
tainty contained within the observed flow data, and hence
is used to describe the response surface.

The method used within the MCMC algorithm to
adjust the model parameters is via parameter multipli-
ers. In this approach, the default TopNet model param-
eters (which vary spatially within the river basin) are
adjusted uniformly throughout the river basin using a
spatially constant set of parameter multipliers. In this
method all sub-catchments receive the same multiplier,
i.e. we assume that the spatial distribution of default
TopNet parameters is suitable. While this approach rep-
resents a simplification, it is a valuable tool to reduce
the dimensionality of the parameter estimation prob-
lem using prior knowledge of the spatial variation
in catchment characteristics. The resulting estimation
problem uses seven parameter multipliers, and accord-
ingly the MCMC algorithm is run using seven paral-
lel chains. A burn-in period of 2000 iterations is fol-
lowed by a parameter estimation period of 1000 iter-
ations. Calculation of the Gelman-Rubin convergence
statistic during the burn-in period was used to con-
firm that the Markov Chain had converged to the sta-
tionary distribution representing the model posterior
distribution.

FLOW MODELLING RESULTS

We now demonstrate how inclusion of explicit discharge
uncertainty information can offer additional insights into
model calibration, by applying the method described
above to calibration of the TopNet model in the Wairau
catchment. The calibration is done in two parts. First,
TopNet is calibrated using flow data produced from the
deterministic rating curve recommended for the Wairau
to serve as a benchmark with which to compare the
new method. Second, the calibration is repeated using
the uncertain rating curve previously derived. Refer to
Figure 6 for an example comparison of the resulting flow
data in the two cases.

Deterministic rating curve

Model calibration was carried out for a 6-month period
in winter 2004 (1 April 2004–1 October 2004). The
MCMC algorithm was run using the likelihood function
derived in the section on MCMC Parameter Search
Method under the classical assumption of Gaussian error:
Op��jy� / M����ESS/2 [i.e. Equation (5)] where M��� is
the sum of squared errors and ESS is the effective sample
size.

The resulting uncertainty bounds on the flow hindcast
are shown in Figure 7A; note that despite the use of
the effective sample size measure which reduces the
peakedness of the objective function, the uncertainty
bounds have a very narrow range and are barely visible
except during times of high flood.
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Uncertain rating curve

The model calibration was repeated with the same
MCMC algorithm, but using the performance measure
described in the section on Evaluation Measure which
incorporates rating-curve uncertainty. The resulting flow
hindcast with 90% confidence intervals is shown in
Figure 7B.

Comparison of results

Both parameter estimation techniques are shown to
underestimate the total uncertainty during some periods,
demonstrated, e.g. during the recession of the flood
peak in late June: for both techniques the estimated
flow bounds lie completely outside the estimation flow
uncertainty (Figure 7). However, when the uncertain
rating curve is used, the flow uncertainty bounds are
wider and the model is more successful in predicting the
flood peaks, especially during the wetting-up period of
early winter. It is especially noticeable that during the
highest flood peak, the calibration using the uncertain
rating curve includes the median modelled flow within
the uncertainty bounds, whereas the calibration using the
deterministic rating curve underestimates the flood peak
by almost 50%, even at the 90% confidence level.

It is also desirable to provide a more objective measure
of the ability of the two models to span the observed
discharge data. For example, consider the percentage
of time that the median gauged discharge lies within
the bounds of the modelled discharge CDF. During the
calibration period, this figure is 68% for the model
using the deterministic rating curve versus 86% for the
model using the uncertain rating curve, suggesting an
improvement in performance in the latter case. However,
this measure could be criticized as it favours models with
overly wide uncertainty bounds. To overcome this, we
consider a generalization of the rank histogram, which
measures how well the spread of a model forecasts
represents the true variability of the observations. A rank
histogram, usually based on deterministic observation
data, is derived by tallying, for each timestep, the quantile
at which the observed data lies within the model forecast.
A perfect result gives a flat histogram. A ‘u’ shape
histogram indicates an underdispersive model, with many
observations lying outside the extremes of the model
prediction; conversely, a dome shape indicates that the
model spread is too large. We extend this to the case of
uncertain observed data, by tallying the model quantile at
which each observed data quantile lies, for each observed
data quantile and for each forecast timestep.

Such generalized rank histograms are shown in Figure
8, for both deterministic and uncertain rating curves, for
the winter 2004 calibration period. The rank histograms
show additionally the proportion of the values in the
lower and upper quantiles where the observed data lie
outside the model bounds. It is clear that both models
are underdispersive, i.e. the uncertainty bounds are not
wide enough to capture the errors between modelled and
measured discharge data. However, the underdispersion
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Figure 8. Generalized rank histogram showing spread of model pre-
dictions compared with variability of uncertain discharge data, during
calibration period. Results shown for both deterministic and uncertain

rating-curve cases

is less severe in the case of the uncertain rating curve.
This is consistent with the fact that our method has
taken into account one source of uncertainty in the
modelling procedure, i.e. rating-curve uncertainty; but
there are still many uncertainty sources not considered
which contribute to the underdispersion.

Effects on behavioural model parameter sets

In order to compare the effects of the deterministic ver-
sus uncertain rating curve on model behaviour, we exam-
ine the differences in the distribution of model parameters
between the two methods. Figure 9 presents histograms
showing the marginal posterior probability density func-
tion for each of the TopNet model parameters, for both
the deterministic and the uncertain rating-curve calibra-
tion run. We observe that, in general, parameter distribu-
tions are less constrained when the uncertain rating curve
is used. This result reflects the wider range of model
behaviour considered behavioural when the errors on the
discharge measurements are not artificially constrained.
The result suggests that the identifiability of parameters
such as the TopModel f parameter may be a consequence
of the artificially peaked response surface due to the use
of a deterministic rating curve.

Validation

The model calibration process was tested by run-
ning the model with deterministic and uncertain rating-
curve calibrations for an independent validation time
period. Again a 6-month winter period was used (1
April 2006–1 October 2006), where significant flood
events occurred in the Wairau and were recorded at Bar-
nett’s Bank gauge. The model predictions for these flood
events are shown in Figure 10, with the model uncer-
tainty bounds compared as before with the 5%, median
and 95% quantiles of the measured flow data series. The
results show that when using the deterministic rating-
curve calibration, the uncertainty in the model predic-
tions is severely underestimated in the validation phase,
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Figure 9. Parameter estimation: comparison of results using deterministic rating curve versus rating curve including uncertainty. Plots show marginal
posterior probability density functions for each of the TopNet model parameters

especially during flood events (Figure 10A). When using
the uncertain rating-curve calibration, there is a signifi-
cant improvement in the model’s ability to bracket the
observed flow (Figure 10B). This improvement is at the
cost of increased uncertainty in the predictions; how-
ever, the results suggest that the wider uncertainty bounds
are warranted due to discrepancies between modelled
and measured flow in the deterministic rating-curve case.
While increased forecast uncertainty may be unwelcome
for decision makers, previous research has demonstrated
that model predictions including significant uncertainty
can be successfully accommodated within a flood fore-
casting framework, using techniques such as probabilistic
assessment of threshold exceedance (de Roo et al., 2003;
Pappenberger et al., 2008).

As before, a rank histogram is calculated to show
how well the model spread captures the variability in
the observed data (Figure 11). Similar to the calibration
period, the underdispersion of the model forecast is
less severe when the uncertain rating curve is used. In
part this measure demonstrates conditional bias in the
model, which tends to underpredict during flood peaks

and overpredict during recession periods, with the bias
being more severe in the case of the deterministic rating
curve. Overpredictions also arise from errors in timing
of model predictions for the second flood peak in the
validation phase, which may signal the influence of other
unaccounted-for uncertainty sources.

DISCUSSION

This paper demonstrates the improvements in model per-
formance, and particularly in uncertainty estimation, that
can be gained by explicit recognition of uncertainty in
the stage–discharge relationship embodied in the rat-
ing curve. Application of the model to a ‘validation’
time period showed that ignoring rating curve uncer-
tainty could lead to significant underestimation of the
uncertainty associated with the model flow predictions,
particularly during flood events. While the improvement
is particularly pronounced in mobile-bed rivers, such
as the Wairau River considered here, all rivers gauged
using a stage–discharge relationship are subject to rating-
curve uncertainty. Perhaps the most important advance
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Figure 10. Model validation results: 90% confidence interval for streamflow at Barnett’s Bank during model validation period. Comparison of results
from model calibrated using a deterministic rating curve (A) versus rating curve including uncertainty (B)
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Figure 11. Generalized Rank Histogram showing spread of model pre-
dictions compared with variability of uncertain discharge data, during
calibration period. Results shown for both deterministic and uncertain

rating-curve cases

demonstrated by our method was the ability to produce
an explicit PDF of discharge as opposed to upper and
lower limits on acceptable discharge. This allowed the

discharge PDF to be used to form a likelihood function
which could be used within a conventional uncertainty
estimation method. However, subjective choices were
not completely removed from the method [for example,
choice of return period for temporal segregate of the time
series; choice of error distribution for individual mea-
surements (Gaussian used); weighting of gauging sets by
time] and these choices might be investigated further in
future applications of the method.

It must be noted that this paper takes only one step
towards the goal of total error quantification in hydrolog-
ical modelling. To achieve this aim, the type of analysis
suggested here must be combined with methods to quan-
tify uncertainty due to input (precipitation) error, initial
and boundary condition error, structural error and others.
Until then, unaccounted-for uncertainties are implicitly
mapped onto parameter uncertainty, which can lead to
bias, under- or over-estimation of uncertainty in model
predictions. Recognition and evaluation of rating-curve
uncertainty magnitude may also help to define those
situations where the uncertainty could be reduced, for
example by increasing the number of verticals in manual
discharge measurements. However, this study has also
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demonstrated that the contribution of such ‘measurement
uncertainties’ is often small when compared to ‘natural
uncertainties’ such as shifts in hydraulic geometry occur-
ring during flood events.

Note also that the Wairau, despite its challenges, is
regularly gauged; in contrast, there are many parts of the
world where large river systems are remote and diffi-
cult to access or monitor. In these types of environments,
gaugings will be infrequent or non-existent, and discharge
estimation may necessarily be undertaken using remote-
sensing methods (Bjerklie et al., 2003, 2005). Such meth-
ods introduce new sources of discharge measurement
error, and additional difficulties, such as ice cover at
the gauging site, may occur in some regions (Shiklo-
manov et al., 2006). In such areas, integrated measures
such as mean annual discharge may be required rather
than continuous discharge measurement; however, these
are also strongly affected by rating-curve error (Clarke,
1999; Clarke et al., 2000). Many large rivers of the
world have complex and unstable morphology affected by
multiple channel-changing mechanisms including floods,
landslides and changes in sediment supply (e.g. Goswami
et al., 1999; Ashworth et al., 2000; Sarma, 2005). Glob-
ally, significant discharge uncertainty may be the norm
rather than the exception.

More general recognition of uncertainty in measured
flow data will have implications for other hydrological
modelling techniques which rely on flow data as input.
For example when data assimilation is used to update
model states based on observed flow data (as it has
been in the Wairau: Clark et al., 2008), errors in the
flow data must be explicitly specified. Good performance
of the data assimilation method relies on accurate error
estimates; hence, it is essential to take into account the
multiple sources of rating-curve uncertainty such that the
error estimates are valid even during flood events. An
analysis such as that suggested here would allow those
errors to be confidently specified.

Another example of the implications of uncertainty in
flow data is in the recent suggestion that integrated per-
formance measures, which evaluate a range of aspects of
model behaviour via a single number, should be replaced
by more meaningful ‘diagnostic signatures’ (Gupta et al.,
2008). These signatures would use a specific interpreta-
tion of model output to focus the evaluation on a partic-
ular component of model structure or parameterization,
and to identify deficiencies and suggest improvements to
the conceptual model structure. As an example, an anal-
ysis of dQ/dt versus Q could be used to study the form
of the catchment storage–discharge relationship. Where
uncertainty in the stage–discharge relationship is recog-
nized, it follows that the ‘true catchment behaviour’ used
to define the diagnostic signature (Q or dQ/dt in this case)
is not known exactly. Hence, the true ‘diagnostic signa-
tures’ will become a fuzzy quantity, with consequences
for the methods used to compare them with model output.
In whatever form that observed data are used for model
calibration, whether via diagnostic signatures, ‘soft data’
or expert knowledge (Seibert and McDonnell, 2002),

manual or automatic calibration (Boyle et al., 2000), it
is essential that the information, uncertainty and error
within that data is evaluated, so that models are not incor-
rectly forced to fit uncertain data treated as though it were
deterministic.

CONCLUSIONS

This paper presents a method to quantify uncertainty
in river discharge measurements caused by uncertainties
in the rating curve used to transform stage values into
discharge values. The method was designed to assess
the combined uncertainty caused by errors in stage
and velocity measurements, rating-curve interpolation or
extrapolation and cross-section change due to vegetation
growth of bed movement.

We demonstrate how the method can be used to
provide a complete PDF (and hence also confidence
bounds) for measured discharge, and how this PDF
can be used to form a likelihood function to enable
model calibration allowing for rating-curve uncertainty.
The method is tested on the Wairau River in New
Zealand, and results for calibration and validation periods
using both deterministic and uncertain rating curves
are compared. We show that explicit consideration of
the uncertainty in flow measurements leads to a flatter
response surface with higher parameter uncertainty and
hence wider uncertainty bounds for flow predictions.
Use of the uncertain rating curve therefore provides
model predictions with confidence bounds which are
more successful at enclosing the measured flow during
model validation, and hence we suggest provide a more
realistic estimate of model uncertainty.
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